定義在R上的偶函數(shù)在[0,7]上是增函數(shù),在[7,+∞)上是減函數(shù),又f(7)=6,則f(x)(  )
A、在[-7,0]上是增函數(shù),且最大值是6
B、在[-7,0]上是增函數(shù),且最小值是6
C、在[-7,0]上是減函數(shù),且最小值是6
D、在[-7,0]上是減函數(shù),且最大值是6
考點:奇偶性與單調(diào)性的綜合
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系,即可得到結(jié)論.
解答: 解:∵函數(shù)在[0,7]上是增函數(shù),在[7,+∞)上是減函數(shù),
∴函數(shù)f(x)在x=7時,函數(shù)取得最大值f(7)=6,
∵函數(shù)f(x)是偶函數(shù),
∴在[-7,0]上是減函數(shù),且最大值是6,
故選:D
點評:本題主要考查函數(shù)奇偶性和單調(diào)性的判斷,根據(jù)偶函數(shù)的對稱性是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)在等差數(shù)列{an}中,a3=5,a10=-9.求數(shù)列{an}的通項公式以及S9
(2)在等比數(shù)列{an}中,a3=9,a6=243,求數(shù)列{an}的通項公式以及S4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若loga2<0(a>0,且a≠1),則函數(shù)f(x)=ax+1的圖象大致是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下表表示y是x的函數(shù),則函數(shù)的值域是(  )
x0<x<55≤x<1010≤x<1515≤x≤20
y2345
A、[2,5]
B、N
C、(0,20]
D、{2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x>1},則下列判斷正確的是( 。
A、0∈AB、{2}⊆A
C、2⊆AD、∅∈A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過直線x=-
7
2
上一點P分別作圓C1:x2+y2=1和圓C2:(x-1)2+y2=9的切線,切點分別是M、N,則|PM|和|PN|的大小關(guān)系是:( 。
A、|PM|>|PN|
B、|PM|<|PN|
C、|PM|=|PN|
D、不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,B=45°,C=60°,a=12cm,解此三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個內(nèi)角A,B,C的對邊分別是a,b,c,且a2-c2+b2=ab,則角C等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin2x+asinx+
a2+b-1
a
,設(shè)a≥2,若存在x∈R,使得f(x)≤0,求a2+b2-8a的最小值.

查看答案和解析>>

同步練習(xí)冊答案