已知函數(shù)f(x)=2x2-2ax+b,f(-1)=-8.對?x∈R,都有f(x)≥f(-1)成立;記集合A={x|f(x)>0},B={x||x-t|≤1}.
(I)當(dāng)t=1時,求(CRA)∪B.
(II)設(shè)命題P:A∩B≠空集,若¬P為真命題,求實數(shù)t的取值范圍.
【答案】分析:本題考查的是集合運算和命題的真假判斷與應(yīng)用的綜合類問題.在解答時:
(I)首先根據(jù)條件利用二次函數(shù)最值得性質(zhì)求的二次函數(shù)的解析式,進而將集合A具體化,又因為t=1所以可以將集合B具體化,從而問題即可獲得解答;
(Ⅱ)首先要將條件進行轉(zhuǎn)化,即命題P:A∩B≠空集為假命題,再結(jié)合集合A、B的特征利用數(shù)軸即可獲得必要的條件,解不等式組即可獲得問題的解答.
解答:解:由題意(-1,-8)為二次函數(shù)的頂點,
∴f(x)=2(x+1)2-8=2(x2+2x-3).
A={x|x<-3或x>1}.
(Ⅰ)B={x||x-1|≤1}={x|0≤x≤2}.
∴(CRA)∪B={x|-3≤x≤1}∪{x|0≤x≤2}={x|-3≤x≤2}.
∴(CRA)∪B={x|-3≤x≤2}.
(Ⅱ)∵B={x|t-1≤x≤t+1}.且由題意知:命題P:A∩B≠空集為假命題,
所以必有:,
∴實數(shù)t的取值范圍是[-2,0].
點評:本題考查的是集合運算和命題的真假判斷與應(yīng)用的綜合類問題.在解答的過程當(dāng)中充分體現(xiàn)了二次函數(shù)的知識、集合運算的知識以及命題的知識.同時問題轉(zhuǎn)化的思想也在此題中得到了很好的體現(xiàn).值得同學(xué)們體會和反思.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2-
1
x
,(x>0),若存在實數(shù)a,b(a<b),使y=f(x)的定義域為(a,b)時,值域為(ma,mb),則實數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2+log0.5x(x>1),則f(x)的反函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2(m-1)x2-4mx+2m-1
(1)m為何值時,函數(shù)的圖象與x軸有兩個不同的交點;
(2)如果函數(shù)的一個零點在原點,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海)已知函數(shù)f(x)=2-|x|,無窮數(shù)列{an}滿足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比數(shù)列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差數(shù)列?若存在,求出所有這樣的a1,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-5:不等式選講
已知函數(shù)f(x)=2|x-2|-x+5,若函數(shù)f(x)的最小值為m
(Ⅰ)求實數(shù)m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案