若函數(shù)在給定區(qū)間M上存在正數(shù)t,使得對于任意,有,且,則稱為M上的t級類增函數(shù)。給出4個命題

①函數(shù)上的3級類增函數(shù)

②函數(shù)上的1級類增函數(shù)

③若函數(shù)上的級類增函數(shù),則實數(shù)a的最小值為2

④設(shè)是定義在上的函數(shù),且滿足:1.對任意,恒有;2.對任意,恒有;3. 對任意,,若函數(shù)上的t級類增函數(shù),則實數(shù)t的取值范圍為。

以上命題中為真命題的是     

 

【答案】

①④

【解析】

試題分析:因為不成立,故A不正確;,∵f(x)=|log2(x-1)|,,∴f(x+1)-f(x)=|log2x|-|log2(x-1)|0在(1,+∞)上不成立,故B不正確;∵函數(shù)f(x)=sinx+ax為[ ,+∞)上的級類增函數(shù),

∴sin(x+)+a(x+)≥sinx+ax,∴sinxcos+cosxsin+ax+a≥sinx+ax,∴ cosx+a≥

sinx,當(dāng)x=時,a≥,a≥,∴實數(shù)a的最小值不為2,故C不正確;∵f(x)=x2-3x為[1,+∞)上的t級類增函數(shù),∴(x+t)2-3(x+t)≥x2-3x,∴2tx+t2-3t≥0, t≥3-2x∈[1,+∞),故D成立.故答案①④

考點:命題的真假

點評:本題考查命題的真假判斷,是中檔題.解題時要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價轉(zhuǎn)化.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•成都模擬)若函數(shù)f(x)在給定區(qū)間M上,存在正數(shù)t,使得對于任意x∈M,有x+t∈M,且f(x+t)≥f(x),則稱f(x)為M上的t級類增函數(shù),則以下命題正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省高三第6次月考理科數(shù)學(xué)試卷(解析版) 題型:填空題

若函數(shù)在給定區(qū)間M上存在正數(shù)t,使得對于任意,有,且,則稱為M上的t級類增函數(shù)。給出4個命題

①函數(shù)上的3級類增函數(shù)

②函數(shù)上的1級類增函數(shù)

③若函數(shù)上的級類增函數(shù),則實數(shù)a的最小值為2

④設(shè)是定義在上的函數(shù),且滿足:1.對任意,恒有;2.對任意,恒有;3. 對任意,若函數(shù)上的t級類增函數(shù),則實數(shù)t的取值范圍為。

    以上命題中為真命題的是     

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年福建省寧德市高三畢業(yè)班質(zhì)量檢查數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

若函數(shù)f(x)在給定區(qū)間M上,存在正數(shù)t,使得對于任意x∈M,有x+t∈M,且f(x+t)≥f(x),則稱f(x)為M上的t級類增函數(shù),則以下命題正確的是( )
A.函數(shù)上的1級類增函數(shù)
B.函數(shù)f(x)=|log2(x-1)|是(1,+∞)上的1級類增函數(shù)
C.若函數(shù)上的級類增函數(shù),則實數(shù)a的最小值為2
D.若函數(shù)f(x)=x2-3x為[1,+∞)上的t級類增函數(shù),則實數(shù)t的取值范圍為[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)在給定區(qū)間M上存在正數(shù),使得對于任意,有,且,則稱為M上的級類增函數(shù).給出3個命題:

①函數(shù)上的3級類增函數(shù);

②函數(shù)上的1級類增函數(shù);

③若函數(shù)上的級類增函數(shù),

則實數(shù)的最小值為2.

以上命題中為真命題的是       .

查看答案和解析>>

同步練習(xí)冊答案