【題目】在某電視娛樂節(jié)目的游戲活動中,每人需完成A、B、C三個項(xiàng)目.已知選手甲完成A、B、C三個項(xiàng)目的概率分別為、、.每個項(xiàng)目之間相互獨(dú)立.
(1)選手甲對A、B、C三個項(xiàng)目各做一次,求甲至少完成一個項(xiàng)目的概率.
(2)該活動要求項(xiàng)目A、B 各做兩次,項(xiàng)目C做三次.若兩次項(xiàng)目A均完成,則進(jìn)行項(xiàng)目B,并獲得積分a;兩次項(xiàng)目B均完成,則進(jìn)行項(xiàng)目C,并獲積分3a;三次項(xiàng)目C只要兩次成功,則該選手闖關(guān)成功并獲積分6a(積分不累計),且每個項(xiàng)目之間互相獨(dú)立.用X表示選手甲所獲積分的數(shù)值,寫出X的分布列并求數(shù)學(xué)期望.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,過函數(shù)的圖象上的兩點(diǎn),作軸的垂線,垂足分別為,,線段與函數(shù)的圖象交于點(diǎn),且與軸平行.
(1)當(dāng),,時,求實(shí)數(shù)的值;
(2)當(dāng)時,求的最小值;
(3)已知,,若,為區(qū)間內(nèi)任意兩個變量,且,
求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左焦點(diǎn)為,離心率為,為圓的圓心.
(1)求橢圓的方程;
(2)已知過橢圓右焦點(diǎn)的直線交橢圓于兩點(diǎn),過且與垂直的直線與圓交于兩點(diǎn),求四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=3,且Sn=nan+1-n2-n.
(1)求{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足,求{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某位同學(xué)進(jìn)行寒假社會實(shí)踐活動,為了對白天平均氣溫與某奶茶店的某種飲料銷量之間的關(guān)系進(jìn)行分析研究,他分別記錄了1月11日至1月15日的白天平均氣溫與該小賣部的這種飲料銷量(杯),得到如下數(shù)據(jù):
日期 | 1月11日 | 1月12日 | 1月13日 | 1月14日 | 1月15日 |
平均氣溫 | 9 | 10 | 12 | 11 | 8 |
銷量(杯) | 23 | 25 | 30 | 26 | 21 |
(1)若先從這五組數(shù)據(jù)中抽出2組,求抽出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;
(2)請根據(jù)所給五組數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)根據(jù)(1)中所得的線性回歸方程,若天氣預(yù)報1月16日的白天平均氣溫,請預(yù)測該奶茶店這種飲料的銷量.
(參考公式:,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義在區(qū)間D上的函數(shù),若存在正整數(shù)k,使不等式恒成立,則稱為型函數(shù).
(1)設(shè)函數(shù),定義域.若是型函數(shù),求實(shí)數(shù)a的取值范圍;
(2)設(shè)函數(shù),定義域.判斷是否為型函數(shù),并給出證明.
(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且的解集為,數(shù)列的前項(xiàng)和為,對任意,都有
(1)求數(shù)列的通項(xiàng)公式.
(2)已知數(shù)列的前項(xiàng)和為,滿足,,求數(shù)列的前項(xiàng)和.
(3)已知數(shù)列,滿足,若對任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是定義在上的偶函數(shù),對任意,都有,且當(dāng)時,.在區(qū)間內(nèi)關(guān)于的方程恰有個不同的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】光線從點(diǎn)射出,到軸上的點(diǎn)后,被軸反射到軸上的點(diǎn),又被軸反射,這時反射線恰好過點(diǎn).
(1)求所在直線的方程;
(2)過點(diǎn)且斜率為的直線與,軸分別交于、,過、作直線的垂線,垂足為、,求線段長度的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com