(13分) 已知橢圓C的中心在原點(diǎn),離心率等于,它的一個(gè)短軸端點(diǎn)點(diǎn)恰好是拋物線 的焦點(diǎn)。
(1)求橢圓C的方程;
(2)已知P(2,3)、Q(2,-3)是橢圓上的兩點(diǎn),A,B是橢圓上位于直線PQ兩側(cè)的動(dòng)點(diǎn),
①若直線AB的斜率為,求四邊形APBQ面積的最大值;
②當(dāng)A、B運(yùn)動(dòng)時(shí),滿足=,試問(wèn)直線AB的斜率是否為定值,請(qǐng)說(shuō)明理由。
解析試題分析:(1)根據(jù)離心率等于,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn),易求出a,b的值,得到橢圓C的方程.
(2)設(shè)出直線AB的方程代入橢圓的方程,消去y得到關(guān)于x的一元二次方程,再結(jié)合根與系數(shù)的關(guān)系,求得四邊形APBQ的面積,從而可求四邊形APBQ面積的最大值;
(3)設(shè)直線PA的斜率為k,則PB的斜率為-k,將直線的方程代入橢圓的方程,消去y得到關(guān)于x的一元二次方程,再結(jié)合根與系數(shù)的關(guān)系,即可求得得出AB的斜率為定值.
試題解析:(1)設(shè)C方程為(a>b>0),則。由,,得 故橢圓C的方程為。 4分
(2)①設(shè)(,),B(,),直線AB的方程為,代入中整理得,△>0-4<<4,+=,=
四邊形APBQ的面積=,當(dāng)時(shí)
②當(dāng)=時(shí),PA、PB的斜率之和為0,設(shè)直線PA的斜率為,則PB的斜率為-,PA的直線方程為,代入中整理得
+=0,2+=,
同理2+=,+=,-=,
從而=,即直線AB的斜率為定值 13分
考點(diǎn):1.直線與圓錐曲線的綜合問(wèn)題;2.橢圓的標(biāo)準(zhǔn)方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線的焦點(diǎn)為,過(guò)點(diǎn)的直線交拋物線于點(diǎn),.
(Ⅰ)若(點(diǎn)在第一象限),求直線的方程;
(Ⅱ)求證:為定值(點(diǎn)為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知是橢圓E:的兩個(gè)焦點(diǎn),拋物線的焦點(diǎn)為橢圓E的一個(gè)焦點(diǎn),直線y=上到焦點(diǎn)F1,F(xiàn)2距離之和最小的點(diǎn)P恰好在橢圓E上,
(Ⅰ)求橢圓E的方程;
(Ⅱ)如圖,過(guò)點(diǎn)的動(dòng)直線交橢圓于A、B兩點(diǎn),是否存在定點(diǎn)M,使以AB為直徑的圓恒過(guò)這個(gè)點(diǎn)?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線,直線與E交于A、B兩點(diǎn),且,其中O為原點(diǎn).
(1)求拋物線E的方程;
(2)點(diǎn)C坐標(biāo)為,記直線CA、CB的斜率分別為,證明:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線與直線相交于A、B 兩點(diǎn).
(1)求證:;
(2)當(dāng)的面積等于時(shí),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)直線與雙曲線交于A、B,且以AB為直徑的圓過(guò)原點(diǎn),求點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓:.
(1)橢圓的短軸端點(diǎn)分別為(如圖),直線分別與橢圓交于兩點(diǎn),其中點(diǎn)滿足,且.
①證明直線與軸交點(diǎn)的位置與無(wú)關(guān);
②若∆面積是∆面積的5倍,求的值;
(2)若圓:.是過(guò)點(diǎn)的兩條互相垂直的直線,其中交圓于、兩點(diǎn),交橢圓于另一點(diǎn).求面積取最大值時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知橢圓的長(zhǎng)軸為AB,過(guò)點(diǎn)B的直線與
軸垂直,橢圓的離心率,F為橢圓的左焦點(diǎn),且
(1)求此橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P是此橢圓上異于A,B的任意一點(diǎn), 軸,H為垂足,延長(zhǎng)HP到點(diǎn)Q,使得HP=PQ,連接AQ并延長(zhǎng)交直線于點(diǎn),為的中點(diǎn),判定直線與以為直徑的圓O位置關(guān)系。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上的拋物線過(guò)點(diǎn).
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若拋物線與直線交于、兩點(diǎn),求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com