已知定義在R上的函數(shù)f(x)和數(shù)列{an},a1=a,a2≠a1,當(dāng)n∈N*且n≥2時(shí),an=f(an-1),且f(an)-f(an-1)=k(an-an-1),其中a,k均為非零常數(shù).
(Ⅰ)若數(shù)列{an}是等差數(shù)列,求k的值;
(Ⅱ)令bn=an+1-an(n∈N*),若b1=1,求數(shù)列{bn}的通項(xiàng)公式;
(Ⅲ)若數(shù)列{an}為等比數(shù)列,求函數(shù)f(x)的解析式.
【答案】分析:(Ⅰ)利用等差數(shù)列的定義an+1-an=an-an-1,an=f(an-1),易得k=1
(Ⅱ)利用等比數(shù)列的定義證明數(shù)列{bn}是等比數(shù)列,進(jìn)而寫(xiě)出數(shù)列{bn}的通項(xiàng)公式
(Ⅲ)由數(shù)列{bn}是等比數(shù)列,即{an+1-an}是等比數(shù)列,利用累加法,可求得數(shù)列{an}的通項(xiàng)公式,若數(shù)列{an}為等比數(shù)列
則通項(xiàng)公式為an=Aqn-1形式,經(jīng)對(duì)照可得函數(shù)解析式
解答:解:(Ⅰ)由已知an=f(an-1),f(an)-f(an-1)=k(an-an-1),
   an+1-an=f(an)-f(an-1)=k(an-an-1),
∵數(shù)列{an}是等差數(shù)列,∴an+1-an=an-an-1
∴k=1
(Ⅱ)由b1=a2-a1≠0,可得b3=a3-a2=f(a2)-f(a1)=k(a2-a1)≠0
且當(dāng)n>2時(shí)
bn=an+1-an=f(an)-f(an-1)=k(an-an-1)=…=kn-1(a2-a1)≠0
===k
∴數(shù)列{bn}是一個(gè)以首項(xiàng)為b1,公比為k的等比數(shù)列
∴數(shù)列{bn}的通項(xiàng)公式為  bn=kn(n∈N*
(Ⅲ)若數(shù)列{an}為等比數(shù)列,由(Ⅱ)得bn=kn-1(a2-a1
∴b1+b2+b3+…+bn-1=(a2-a1)+(a3-a2)+…+(an-an-1)=an-a1
∴an=a1+(b1+b2+b3+…+bn-1
當(dāng)k=1時(shí),an=a1+(a2-a1)(n-1)(n≥2)
上式對(duì)n=1也成立,所以數(shù)列{an}的通項(xiàng)公式為an=a+(f(a)-a)(n-1)
所以當(dāng)k=1時(shí),數(shù)列{an}是一個(gè)以首項(xiàng)為a,公差為f(a)-a的等差數(shù)列
∴k≠1
當(dāng)k≠1時(shí),an=a1+(a2-a1 (n≥2)
上式對(duì)n=1也成立
∴an=a+(f(a)-a)=a+-
∴a+=0
∴f(a)=ka
∴等式f(a)=ka對(duì)任意實(shí)數(shù)a均成立
∴f(x)=kx (k≠1)
點(diǎn)評(píng):本題綜合考查了等比、等差數(shù)列的定義及通項(xiàng)公式,累加法求數(shù)列的通項(xiàng)公式,與函數(shù)結(jié)合是本題的特色,對(duì)解題技巧有較高的要求,屬于難題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)y=f(x)滿(mǎn)足下列條件:
①對(duì)任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函數(shù),
則下列不等式中正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)滿(mǎn)足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  則:
①f(3)的值為
0
0

②f(2011)的值為
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)滿(mǎn)足f(x+1)=-f(x),且x∈(-1,1]時(shí)f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,則f(3)=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)是偶函數(shù),對(duì)x∈R都有f(2+x)=f(2-x),當(dāng)f(-3)=-2時(shí),f(2013)的值為(  )
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x),對(duì)任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函數(shù)y=f(x+1)的圖象關(guān)于直線x=-1對(duì)稱(chēng),則f(2013)=( 。
A、0B、2013C、3D、-2013

查看答案和解析>>

同步練習(xí)冊(cè)答案