【題目】在四棱錐P-ABCD中,PA平面ABCD,菱形ABCD的邊長(zhǎng)為2,且,點(diǎn)E、F分別是PA,CD的中點(diǎn),
(1)求證:EF平面PBC
(2)若PC與平面ABCD所成角的大小為,求C到平面PBD的距離
【答案】(1)證明見詳解;(2)
【解析】
(1)取的中點(diǎn),連接,由三角形中位線的性質(zhì)可證,即可證明平面平面,從而得證結(jié)論.
(2)將點(diǎn)到面的距離問(wèn)題轉(zhuǎn)化為求三棱錐的高的問(wèn)題,利用等體積法即可得到答案.
(1)如圖取的中點(diǎn),連接,
因?yàn)辄c(diǎn)E、F分別是PA,CD的中點(diǎn),
所以分別為和中位線,
所以,
又,
所以平面平面,所以平面
(2)連接交于點(diǎn),連接.
設(shè)點(diǎn)到平面的距離為
因?yàn)榱庑?/span>ABCD的邊長(zhǎng)為2,且,
所以,且為等邊三角形,
所以,且,
因?yàn)?/span>平面
所以即為直線與平面所成的角,
所以,所以,
又四邊形為菱形,所以,
所以,所以
又,
所以的面積為
所以
依題為三棱錐的高,
且的面積為,
所以三棱錐的體積為
,
又因?yàn)?/span>,所以,解得,
所以點(diǎn)到平面的距離為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】手機(jī)運(yùn)動(dòng)計(jì)步已經(jīng)成為一種新時(shí)尚.某單位統(tǒng)計(jì)了職工一天行走步數(shù)(單位:百步),繪制出如下頻率分布直方圖:
(1)求直方圖中a的值,并由頻率分布直方圖估計(jì)該單位職工一天步行數(shù)的中位數(shù);
(2)若該單位有職工200人,試估計(jì)職工一天行走步數(shù)不大于13000的人數(shù);
(3)在(2)的條件下,該單位從行走步數(shù)大于15000的3組職工中用分層抽樣的方法選取6人參加遠(yuǎn)足拉練活動(dòng),再?gòu)?/span>6人中選取2人擔(dān)任領(lǐng)隊(duì),求這兩人均來(lái)自區(qū)間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市有一家大型共享汽車公司,在市場(chǎng)上分別投放了黃、藍(lán)兩種顏色的汽車,已知黃、藍(lán)兩種顏色的汽車的投放比例為.監(jiān)管部門為了了解這兩種顏色汽車的質(zhì)量,決定從投放到市場(chǎng)上的汽車中隨機(jī)抽取5輛汽車進(jìn)行試駕體驗(yàn),假設(shè)每輛汽車被抽取的時(shí)能性相同.
(1)求抽取的5輛汽車中恰有2輛是藍(lán)色汽車的概率;
(2)在試駕體驗(yàn)過(guò)程中,發(fā)現(xiàn)藍(lán)色汽車存在一定質(zhì)量問(wèn)題,監(jiān)管部門決定從投放的汽車中隨機(jī)地抽取一輛送技術(shù)部門作進(jìn)一步抽樣檢測(cè),并規(guī)定:若抽取的是黃色汽車.則將其放回市場(chǎng),并繼續(xù)隨機(jī)地抽取下一輛汽車;若抽到的是藍(lán)色汽車,則抽樣結(jié)束;并規(guī)定抽樣的次數(shù)不超過(guò)次,在抽樣結(jié)束時(shí),若已取到的黃色汽車數(shù)以表示,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若曲線過(guò)點(diǎn),求曲線在點(diǎn)處的切線方程;
(2)求函數(shù)在區(qū)間上的最大值;
(3)若函數(shù)有兩個(gè)不同的零點(diǎn),,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若橢圓的離心率等于,拋物線的焦點(diǎn)在橢圓的頂點(diǎn)上.
(1)求拋物線的方程;
(2)若過(guò)的直線與拋物線交于、兩點(diǎn),又過(guò)、作拋物線的切線、,當(dāng)時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列關(guān)于命題的說(shuō)法錯(cuò)誤的是( )
A.命題“若x2﹣3x+2=0,則x=2”的逆否命題為“若x≠2,則x2﹣3x+2≠0”
B.“a=2”是“函數(shù)f(x)=ax在區(qū)間(﹣∞,+∞)上為增函數(shù)”的充分不必要條件
C.命題“x∈R,使得x2+x+1<0”的否定是:“x∈R,均有x2+x+1≥0”
D.“若f ′()=0,則為y=f(x)的極值點(diǎn)”為真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)為橢圓右頂點(diǎn),過(guò)橢圓的右焦點(diǎn)的直線與橢圓交于,兩點(diǎn)(異于),直線,分別交直線于,兩點(diǎn). 求證:,兩點(diǎn)的縱坐標(biāo)之積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且acosC+ccosA=2bcosA.
(1)求角A的值;
(2)若, ,求△ABC的面積S.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是一個(gè)半圓柱與多面體構(gòu)成的幾何體,平面與半圓柱的下底面共面,且, 為弧上(不與重合)的動(dòng)點(diǎn).
(1)證明: 平面;
(2)若四邊形為正方形,且, ,求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com