【題目】已知拋物線,點(diǎn)與拋物線的焦點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),過(guò)點(diǎn)且斜率為的直線與拋物線交于不同兩點(diǎn),線段的中點(diǎn)為,直線與拋物線交于兩點(diǎn).
(Ⅰ)判斷是否存在實(shí)數(shù)使得四邊形為平行四邊形.若存在,求出的值;若不存在,說(shuō)明理由;
(Ⅱ)求的取值范圍.
【答案】(Ⅰ)答案見(jiàn)解析;(Ⅱ) .
【解析】試題分析:(Ⅰ)設(shè)直線的方程,代入拋物線方程,利用韋達(dá)定理及中點(diǎn)坐標(biāo)公式求得點(diǎn)坐標(biāo),求得直線的方程,代入拋物線方程,若四邊形為平行四邊形,當(dāng)且僅當(dāng),即,求得的值,結(jié)合,故不存在使得四邊形為平行四邊形;(Ⅱ)計(jì)算出,根據(jù)的取值范圍,即可求得的取值范圍.
試題解析:(Ⅰ)設(shè)直線的方程為,設(shè).
聯(lián)立方程組,得.
顯然,且,即,得且.
得,
, .
直線的方程為: ,
聯(lián)立方程組,得,
得,
若四邊形為平行四邊形,
當(dāng)且僅當(dāng) ,即,
得,與且矛盾.
故不存在實(shí)數(shù)使得四邊形為平行四邊形
(Ⅱ)
由且,得;
當(dāng), 取得最小值;
當(dāng)時(shí), 取;當(dāng)時(shí), 取;
所以
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某中學(xué)舉行的物理知識(shí)競(jìng)賽中,將三個(gè)年級(jí)參賽學(xué)生的成績(jī)?cè)谶M(jìn)行整理后分成5組,繪制出如圖所示的須率分布直方圖,圖中從左到右依次為第一、第二、第三、第四、第五小組.已知第三小組的頻數(shù)是15.
(1)求成績(jī)?cè)?/span>50-70分的頻率是多少
(2)求這三個(gè)年級(jí)參賽學(xué)生的總?cè)藬?shù)是多少:
(3)求成績(jī)?cè)?/span>80-100分的學(xué)生人數(shù)是多少
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面平面, , , , , .
(Ⅰ)求證: ;
(Ⅱ)求二面角的余弦值;
(Ⅲ)若點(diǎn)在棱上,且平面,求線段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)的導(dǎo)函數(shù)f '(x)的圖象如圖所示,f(-1)=f(2)=3,令g(x)=(x-1)f(x),則不等式g(x)≥3x-3的解集是( )
A. [-1,1]∪[2,+∞)B. (-∞,-1]∪[1,2]
C. (-∞,-1]∪[2,+∞)D. [-1,2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知三棱錐O-ABC的三條側(cè)棱OA,OB,OC兩兩垂直, 為等邊三角形, 為內(nèi)部一點(diǎn),點(diǎn)在的延長(zhǎng)線上,且PA=PB.
(Ⅰ)證明:OA=OB;
(Ⅱ)證明:平面PAB平面POC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線與坐標(biāo)軸的交點(diǎn)都在圓C上.
(1)求圓C的方程;
(2)若圓C與直線交于A,B兩點(diǎn),且,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】網(wǎng)絡(luò)是一種先進(jìn)的高頻傳輸技術(shù),我國(guó)的技術(shù)發(fā)展迅速,已位居世界前列.華為公司2019年8月初推出了一款手機(jī),現(xiàn)調(diào)查得到該款手機(jī)上市時(shí)間和市場(chǎng)占有率(單位:%)的幾組相關(guān)對(duì)應(yīng)數(shù)據(jù).如圖所示的折線圖中,橫軸1代表2019年8月,2代表2019年9月……,5代表2019年12月,根據(jù)數(shù)據(jù)得出關(guān)于的線性回歸方程為.若用此方程分析并預(yù)測(cè)該款手機(jī)市場(chǎng)占有率的變化趨勢(shì),則最早何時(shí)該款手機(jī)市場(chǎng)占有率能超過(guò)0.5%(精確到月)( )
A.2020年6月B.2020年7月C.2020年8月D.2020年9月
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年寒假期間新冠肺炎肆虐,全國(guó)人民眾志成城抗疫情.某市要求全體市民在家隔離,同時(shí)決定全市所有學(xué)校推遲開(kāi)學(xué).某區(qū)教育局為了讓學(xué)生“停課不停學(xué)”,要求學(xué)校各科老師每天在網(wǎng)上授課輔導(dǎo),每天共200分鐘.教育局為了了解高三學(xué)生網(wǎng)上學(xué)習(xí)情況,上課幾天后在全區(qū)高三學(xué)生中采取隨機(jī)抽樣的方法抽取了80名學(xué)生(其中男女生恰好各占一半)進(jìn)行問(wèn)卷調(diào)查,按男女生分為兩組,再將每組學(xué)生在線學(xué)習(xí)時(shí)間(分鐘)分為5組,,,,得到如圖所示的頻率分布直方圖.全區(qū)高三學(xué)生有3000人(男女生人數(shù)大致相等),以頻率估計(jì)概率回答下列問(wèn)題:
(1)估計(jì)全區(qū)高三學(xué)生中網(wǎng)上學(xué)習(xí)時(shí)間不超過(guò)40分鐘的人數(shù);
(2)在調(diào)查的80名高三學(xué)生且學(xué)習(xí)時(shí)間不超過(guò)40分鐘的學(xué)生中,男女生按分層抽樣的方法抽取6人.若從這6人中隨機(jī)抽取2人進(jìn)行電話訪談,求至少抽到1名男生的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com