精英家教網 > 高中數學 > 題目詳情
已知雙曲線方程
x2
20
-
y2
5
=1
,那么雙曲線的焦距是( 。
A、10
B、5
C、
15
D、2
15
分析:根據題設條件求出c2,然后求出c,就能得到雙曲線的焦距2c.
解答:解:c2=25,c=5,
∴雙曲線的焦距2c=10.
故選A.
點評:本題比較簡單,解題時注意不要和橢圓弄混了.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知雙曲線中心在原點且一個焦點為F(
7
,0),直線y=x-1與其相交于M、N兩點,MN中點的橫坐標為-
2
3
,則此雙曲線的方程是(  )
A、
x2
3
-
y2
4
=1
B、
x2
4
-
y2
3
=1
C、
x2
5
-
y2
2
=1
D、
x2
2
-
y2
5
=1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知雙曲線C:
x2
2
-y2=1

(1)求雙曲線C的漸近線方程;
(2)已知點M的坐標為(0,1).設P是雙曲線C上的點,Q是點P關于原點的對稱點.記λ=
MP
MQ
.求λ的取值范圍;
(3)已知點D,E,M的坐標分別為(-2,-1),(2,-1),(0,1),P為雙曲線C上在第一象限內的點.記l為經過原點與點P的直線,s為△DEM截直線l所得線段的長.試將s表示為直線l的斜率k的函數.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•上海)如圖,已知雙曲線C1
x2
2
-y2=1
,曲線C2:|y|=|x|+1,P是平面內一點,若存在過點P的直線與C1,C2都有公共點,則稱P為“C1-C2型點”
(1)在正確證明C1的左焦點是“C1-C2型點“時,要使用一條過該焦點的直線,試寫出一條這樣的直線的方程(不要求驗證);
(2)設直線y=kx與C2有公共點,求證|k|>1,進而證明原點不是“C1-C2型點”;
(3)求證:圓x2+y2=
1
2
內的點都不是“C1-C2型點”

查看答案和解析>>

科目:高中數學 來源: 題型:

已知雙曲線
x22
-y2=1
的兩焦點為F1,F2,P為動點,若PF1+PF2=4.
(Ⅰ)求動點P的軌跡E方程;
(Ⅱ)若A1(-2,0),A2(2,0),M(1,0),設直線l過點M,且與軌跡E交于R、Q兩點,直線A1R與A2Q交于點S.試問:當直線l在變化時,點S是否恒在一條定直線上?若是,請寫出這條定直線方程,并證明你的結論;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•瀘州二模)已知雙曲線方程
x2
2
-
y2
2
=1
,橢圓方程
x2
a2
+
y2
b2
=1(a>b>0)
,A、D分別是雙曲線和橢圓的右準線與x軸的交點,B、C分別為雙曲線和橢圓的右頂點,O為坐標原點,且|OA|,|OB|,|OC|,|OD|成等比數列.
(Ⅰ)求橢圓的方程;
(Ⅱ)若E是橢圓長軸的左端點,動點M滿足MC⊥CE,連接EM,交橢圓于點P,在x軸上有異于點E的定點Q,使得以MP為直徑的圓恒過直線CP、MQ的交點,求點Q的坐標.

查看答案和解析>>

同步練習冊答案