(1)求f′(1);
(2)函數(shù)f(x)在R上不存在極值,求a的取值范圍.
科目:高中數(shù)學 來源: 題型:
(Ⅰ)判斷函數(shù)f(x)=+是否是集合M中的元素,并說明理由;
(Ⅱ)集合M中的元素f(x)具有下面的性質:若f(x)的定義域為D,則對于任意[m,n]D,都存在x0∈[m,n],使得等式f(n)-f(m)=(n-m)f′(x0)成立,試用這一性質證明:方程f(x)-x=0只有一個實數(shù)根;
(Ⅲ)設x1是方程f(x)-x=0的實數(shù)根,求證:對于f(x)定義域中任意的x2,x3,當|x2-x1|<1,且|x3-x1|<1時,|f(x3)-f(x2)|<2.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
設M是滿足下列條件的函數(shù)f(x)構成的集合:“①方程f(x)-x=0有實數(shù)根;②函數(shù)f(x)的導數(shù)f′(x)滿足0<f′(x)<1.”
(1)若函數(shù)f(x)為集合M中的任一元素,試證明方程f(x)-x=0只有一個實根;
(2)判斷函數(shù)g(x)=-+3(x>1)是否是集合M中的元素,并說明理由;
(3)“對于(2)中函數(shù)g(x)定義域內的任一區(qū)間[m,n],都存在x0∈[m,n],使得g(n)-g(m)=(n-m)g′(x0)”,請利用函數(shù)y=lnx的圖像說明這一結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(1)若a=f′(2),b=f′(1),c=f′(0),求a、b、c的值;
(2)若a=f′(2),b=f′(1),c=f′(0),且F(n)=.
求證:F(1)+F(2)+F(3)+…+F(n)<(n∈N*).
(3)設關于x的方程f′(x)=0的兩個實數(shù)根為α、β,且1<α<β<2.
試問:是否存在正整數(shù)n0,使得|f′(n0)|≤?說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com