解答:解:(1)由題意可知:na
n+1=S
n+n(n+1)
∴(n-1)a
n=S
n-1+(n-1)n
兩式相減可得:a
n+1-a
n=2
所以數(shù)列{a
n}為以2為首項(xiàng)以2為公差的等差數(shù)列.
∴a
n=2+(n-1)•2=2n
∴數(shù)列{a
n}的通項(xiàng)公式:a
n=2n,n∈N*
(2)由(1)知:
Sn==n2+n∴
Tn==,
∴
T1==1T2==T3==T4==T5==…
可猜測(cè)當(dāng)n≥3時(shí),數(shù)列{a
n}為單調(diào)遞減數(shù)列,當(dāng)n≤2時(shí),數(shù)列{a
n}為單調(diào)遞增數(shù)列.
對(duì)“當(dāng)n≥3時(shí),數(shù)列{a
n}為單調(diào)遞減數(shù)列”證明如下:
當(dāng)n=3時(shí),
T3== 當(dāng)n=4時(shí),
T4==,∴T
4<T
3假設(shè)當(dāng)n=k時(shí)成立,即T
k<T
k-1,∴
>則當(dāng)n=k+1時(shí),
Tk+1= =
•<• (+)=
<故當(dāng)n=k+1時(shí)猜測(cè)成立.綜上可知:當(dāng)n≥3時(shí),數(shù)列{a
n}為單調(diào)遞減數(shù)列,當(dāng)n≤2時(shí),數(shù)列{a
n}為單調(diào)遞增數(shù)列.
又因?yàn)椋簩?duì)一切正整數(shù)n,總有T
n≤m,且T
n的最大值為
,所以
m≥.
∴當(dāng)n≥3時(shí),T
n>T
n+1,
m的取值范圍為:
m≥.