將函數(shù)f(x)=sin2x+cos2x的圖象向左平移
π
6
個單位得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)的圖象
( 。
A.關(guān)于直線x=
π
24
對稱
B.關(guān)于直線x=
11π
24
對稱
C.關(guān)于點(-
π
24
,0)
對稱
D.關(guān)于點(
π
24
,0)
對稱
把函數(shù)f(x)=sin2x+cos2x=
2
sin(2x+
π
4
)的圖象向左平移
π
6
個單位,
得到函數(shù)y=g(x)=
2
sin[2(x+
π
6
)+
π
4
]=
2
sin(2x+
12
)=-
2
cos(2x+
π
12
)的圖象,
令2x+
π
12
=kπ,k∈z,求得x=
2
-
π
24

故函數(shù)g(x)的對稱軸為x=
2
-
π
24
,k∈z,
當(dāng)k=1時,對稱軸為x=
11π
24

故選:B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,是y=Asin(ωx+φ),(A>0,ω>0,0<φ<π)的圖象的一部分,則函數(shù)的表達式為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)y=3sin(2x-
π
3
)的圖象為C,如下結(jié)論中錯誤的是( 。
A.圖象C關(guān)于直線x=
11
12
π對稱
B.圖象C關(guān)于點(
3
,0)對稱
C.函數(shù)f(x)在區(qū)間(-
π
12
,
12
)
內(nèi)是增函數(shù)
D.由y=3cos2x得圖象向右平移
12
個單位長度可以得到圖象C

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

要得到函數(shù)y=3cos(2x-
π
2
)的圖象,可以將函數(shù)y=3sin(2x-
π
4
)的圖象沿著x軸向______單位.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

函數(shù)f1(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的一段圖象過點(0,1),如圖所示.
(1)求函數(shù)f1(x)的表達式;
(2)將函數(shù)y=f1(x)的圖象向右平移個單位,得函數(shù)y=f2(x)的圖象,求y=f2(x)的最大值,并求出此時自變量x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=2
3
sin2
x
2
+sinx-
3
+1

(Ⅰ)求f(
π
3
)
的值;
(Ⅱ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)作出f(x)在一個周期內(nèi)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)a=(sin56°-cos56°), b=cos50°·cos128°+cos40°·cos38°,
c= (cos80°-2cos250°+1),則a,b,c的大小關(guān)系是  (    ).
A.a(chǎn)>b>cB.b>a>cC.c>a>bD.a(chǎn)>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

=         

查看答案和解析>>

同步練習(xí)冊答案