已知橢圓的中心為原點(diǎn),長(zhǎng)軸在 軸上,上頂點(diǎn)為 ,左、右焦點(diǎn)分別為 ,線段 的中點(diǎn)分別為 ,且△是面積為4的直角三角形。(Ⅰ)求該橢圓的離心率和標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò) 作直線交橢圓于,,求直線的方程
:(Ⅰ)+=1(Ⅱ) 和
【解析】::(Ⅰ)如答(20)圖,設(shè)所求橢圓的標(biāo)準(zhǔn)方程為+=1(),
右焦點(diǎn)為因 是直角三角形且 ,故 為直角,從而,即 ,結(jié)合 得 。故 ,所以離心率 ,在 中, 故
由題設(shè)條件得 ,從而因此所求 橢圓的的標(biāo)準(zhǔn)方程為:+=1
(Ⅱ)由(Ⅰ)知 ,由題意,直線的傾斜角不為0,故可設(shè)直線的方程為,代入橢圓方程(*)
設(shè) 則 是上面方程的兩根,因此
又,
所以
由 ,知 ,即,解得
所以滿足條件的直線有兩條,其方程分別為 和
【考點(diǎn)定位】本題考查橢圓的標(biāo)準(zhǔn)方程;平面向量數(shù)量積的運(yùn)算;直線的一般式方程;直線與圓錐曲線的綜合問(wèn)題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ||
2 |
3 |
|
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
3 |
| ||
2 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ||
2 |
3 |
y2 |
4 |
y2 |
4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012年全國(guó)普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(重慶卷解析版) 題型:解答題
已知橢圓的中心為原點(diǎn),長(zhǎng)軸在 軸上,上頂點(diǎn)為 ,左、右焦點(diǎn)分別為 ,線段 的中點(diǎn)分別為 ,且△是面積為4的直角三角形。(Ⅰ)求該橢圓的離心率和標(biāo)準(zhǔn)方程;(Ⅱ)過(guò) 作直線交橢圓于,,求△的面積
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com