如圖為某幾何體三視圖,已知三角形的三邊長與圓的直徑均為2,求該幾何體的體積.
考點:由三視圖求面積、體積
專題:空間位置關系與距離
分析:根據(jù)幾何體的三視圖得該幾何體是一圓錐和一球的組合體,根據(jù)所給的數(shù)據(jù)求出體積來.
解答: 解:根據(jù)幾何體的三視圖知,該幾何體為一圓錐和一球的組合體,
∴該幾何體的體積為
V=V圓錐+V
=
1
3
×π×12×
3
+
4
3
×π×13
=
4+
3
3
π.
點評:本題考查了空間幾何體的三視圖的應用問題,解題時應根據(jù)幾何體的三視圖,得出該幾何體是什么圖形,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

過雙曲線x2-y2=8的左焦點F1有一條弦PQ在左支上,若|PQ|=7,F(xiàn)2是雙曲線的右焦點,則△PF2Q的周長是(  )
A、28
B、14-8
2
C、14+8
2
D、8
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1的左、右兩個焦點,若橢圓上滿足PF1⊥PF2的點P有且只有兩個,則離心率e的值為( 。
A、
1
3
B、
1
2
C、
2
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,△BCD中,∠BCD=90°,AB⊥平面BCD,E,F(xiàn)分別為AC,AD的中點.
求證:平面BEF⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖1所示,在矩形ABCD中,AB=2AD=4,E為CD的中點,沿AE將△AED折起,如圖2所示,O、H、M分別為AE、BD、AB的中點,且DM=2.
(1)求證OH∥平面DEC;
(2)求證平面ADE⊥平面ABCE;
(3)求三棱錐H-OMB的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2cos2x+2
3
sinx•cosx+1,(x∈R).
(1)化簡函數(shù)f(x),并求它的振幅、周期和初相;
(2)寫出函數(shù)f(x)的圖象是由y=sinx,(x∈R)的圖象經(jīng)過怎樣的平移和伸縮變換得到的?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
sinxcosx-
1
2
sin2x-
3
2
cos2x(x∈R)
(1)當x∈[-
π
12
,
12
]時,求函數(shù)f(x)取得最大值時的值;
(2)設銳角△ABC的內(nèi)角A,B,C的對應邊分別是a,b,c,且a=1,c∈N*,若向量
m
=(sinB,2),
n
=(-1,sinA),
n
m
,求c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2.BM⊥PD于M.
(1)求證:平面ABM⊥平面PCD;
(2)求直線PC與平面ABM所成的角的正切值;
(3)求點O到平面ABM的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:ax+y=1在矩陣A=
12
01
對應的變換作用下變?yōu)橹本l′:x+by=1.
(1)求實數(shù)a,b的值;
(2)求矩陣A的特征值與特征向量.

查看答案和解析>>

同步練習冊答案