已知方程x2+(2k-1)x+k2=0,求使方程有兩個大于1的實數(shù)根的充要條件.
【答案】分析:解法一,將兩個根都減去1將已知中的兩個大于1的實數(shù)根轉(zhuǎn)化為兩個數(shù)都大于0轉(zhuǎn)化為兩個數(shù)的和大于0同時積大于0,利用韋達定理轉(zhuǎn)化為k的不等式,求出k的范圍.
解法二,構(gòu)造相應(yīng)的函數(shù),結(jié)合函數(shù)的圖象從對稱軸與區(qū)間的關(guān)系、區(qū)間兩個端點的函數(shù)值的符號、判別式三個方面加以限制,寫出充要條件.
解答:解:法一:∵x2+(2k-1)x+k2=0,則方程有兩個大于1的實數(shù)根x1、x2



所以使方程有兩個大于1的實根的充要條件是:k<-2         
法二:∵方程x2+(2k-1)x+k2=0對應(yīng)的函數(shù)為f(x)=x2+(2k-1)x+k2
方程x2+(2k-1)x+k2=0有兩個大于1的實數(shù)根

?k<-2
所以使方程有兩個大于1的實根的充要條件是:k<-2
點評:解決二次方程的實根分布問題,一般先畫出相應(yīng)的二次函數(shù)的圖象,結(jié)合圖象從對稱軸與區(qū)間的關(guān)系、區(qū)間兩個端點的函數(shù)值的符號、判別式三個方面加以限制即可.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知方程x2+(2k-1)x+k2=0,求使方程有兩個大于1的實數(shù)根的充要條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:不等式x2+kx+1≥0對于一切x∈R恒成立,命題q:已知方程x2+(2k-1)x+k2=0有兩個大于1的實數(shù)根,若p且q為真,p或q為假.求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知方程x2+(2k-1)x+k2=0,求使方程有兩個大于1的實數(shù)根的充要條件.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年福建省廈門市雙十中學高二(上)期中數(shù)學試卷(理科)(解析版) 題型:解答題

已知方程x2+(2k-1)x+k2=0,求使方程有兩個大于1的實數(shù)根的充要條件.

查看答案和解析>>

同步練習冊答案