【題目】在一次高三年級(jí)統(tǒng)一考試中,數(shù)學(xué)試卷有一道滿分10分的選做題,學(xué)生可以從兩道題目中任選一題作答.某校有900名高三學(xué)生參加了本次考試,為了了解該校學(xué)生解答該選做題的得分情況,計(jì)劃從900名考生的選做題成績(jī)中隨機(jī)抽取一個(gè)容量為10的樣本,為此將900名考生選做題的成績(jī)按照隨機(jī)順序依次編號(hào)為001一900.

(1)若采用隨機(jī)數(shù)表法抽樣,并按照以下隨機(jī)數(shù)表,以方框內(nèi)的數(shù)字5為起點(diǎn),從左向右依次讀取數(shù)據(jù),每次讀取三位隨機(jī)數(shù),一行讀數(shù)用完之后接下一行左端.寫出樣本編號(hào)的中位數(shù);

(2)若采用系統(tǒng)抽樣法抽樣,且樣本中最小編號(hào)為08,求樣本中所有編號(hào)之和:

(3)若采用分層軸樣,按照學(xué)生選擇題目或題目,將成績(jī)分為兩層,且樣本中題目的成績(jī)有8個(gè),平均數(shù)為7,方差為4:樣本中題目的成績(jī)有2個(gè),平均數(shù)為8,方差為1.用樣本估計(jì)900名考生選做題得分的平均數(shù)與方差.

【答案】(1)667(2)4130(3)平均數(shù)為7.2,方差為3.56

【解析】

(1)由題取出十個(gè)編號(hào),先將編號(hào)從小到大排列再求中位數(shù)

(2)按照系統(tǒng)抽樣法,抽出的編號(hào)可組成以8為首項(xiàng),以90為公差的等差數(shù)列,求該數(shù)列的前10項(xiàng)和。

(3)分別求出樣本的平均數(shù)和方差,900名考生選做題得分的平均數(shù)與方差和樣本的平均數(shù)與方差相等。

解:(1)根據(jù)題意,讀出的編號(hào)依次是:

512,916(超界),935(超界),805,770,951(超界),512(重復(fù)),687,858,554,876,647,547,332.

將有效的編號(hào)從小到大排列,得

332,512,547,554,647,687,770,805,858,876,

故中位數(shù)為.

(2)由題易知,按照系統(tǒng)抽樣法,抽出的編號(hào)可組成以8為首項(xiàng),以90為公差的等差數(shù)列,故樣本編號(hào)之和即為該數(shù)列的前10項(xiàng)之和.

(3)記樣本中8個(gè)題目成績(jī)分別為,,…,2個(gè)題目成績(jī)分別為,,

由題意可知,,

,,

故樣本平均數(shù)為.

樣本方差為

.

故估計(jì)該校900名考生該選做題得分的平均數(shù)為7.2,方差為3.56.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱柱中,,平面,.

(1)證明:.

(2)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知點(diǎn)是拋物線上一定點(diǎn),直線的傾斜角互補(bǔ),且與拋物線另交于,兩個(gè)不同的點(diǎn).

(1)求點(diǎn)到其準(zhǔn)線的距離;

(2)求證:直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)低碳綠色出行,某市推出“新能源分時(shí)租賃汽車”,其中一款新能源分時(shí)租賃汽車,每次租車收費(fèi)得標(biāo)準(zhǔn)由以下兩部分組成:(1)根據(jù)行駛里程數(shù)按1元/公里計(jì)費(fèi);(2)當(dāng)租車時(shí)間不超過40分鐘時(shí),按0.12元/分鐘計(jì)費(fèi);當(dāng)租車時(shí)間超過40分鐘時(shí),超出的部分按0.20元/分鐘計(jì)費(fèi);(3)租車時(shí)間不足1分鐘,按1分鐘計(jì)算.已知張先生從家里到公司的距離為15公里,每天租用該款汽車上下班各一次,且每次租車時(shí)間t20,60(單位:分鐘).由于堵車,紅綠燈等因素,每次路上租車時(shí)間t是一個(gè)隨即變量.現(xiàn)統(tǒng)計(jì)了他50次路上租車時(shí)間,整理后得到下表:

租車時(shí)間t(分鐘)

[20,30]

(30,40]

(40,50]

(50,60]

頻數(shù)

2

18

20

10

將上述租車時(shí)間的頻率視為概率.

(1)寫出張先生一次租車費(fèi)用y(元)與租車時(shí)間t(分鐘)的函數(shù)關(guān)系式;

(2)公司規(guī)定,員工上下班可以免費(fèi)乘坐公司接送車,若不乘坐公司接送車的每月(按22天計(jì)算)給800元車補(bǔ).從經(jīng)濟(jì)收入的角度分析,張先生上下班應(yīng)該選擇公司接送車,還是租用該款新能源汽車?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)在其圖象上存在不同的兩點(diǎn),其坐標(biāo)滿足條件: 的最大值為0,則稱為“柯西函數(shù)”,則下列函數(shù):① :②:③:④.

其中為“柯西函數(shù)”的個(gè)數(shù)為( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù)).

1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),設(shè)的兩個(gè)極值點(diǎn),()恰為的零點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的空間幾何體中,平面平面都是邊長(zhǎng)為2的等邊三角形,與平面所成的角為60°,且點(diǎn)在平面上的射影落在的平分線上.

(1)求證:平面;

(2)求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解居民消費(fèi)情況,某地區(qū)調(diào)查了10000戶小家庭的日常生活平均月消費(fèi)金額,根據(jù)所得數(shù)據(jù)繪制了樣本頻率分布直方圖,如圖所示,每戶小家庭的平均月消費(fèi)金額均不超過9千元,其中第六組第七組第八組尚未繪制完成,但是已知這三組的頻率依次成等差數(shù)列,且第六組戶數(shù)比第七組多500戶,

(1)求第六組第七組第八組的戶數(shù),并補(bǔ)畫圖中所缺三組的直方圖;

(2)若定義月消費(fèi)在3千元以下的小家庭為4類家庭,定義月消費(fèi)在3千元至6千無的小家庭為B類家庭,定義月消費(fèi)6千元以上的小家庭為C類家庭,現(xiàn)從這10000戶家庭中按分層抽樣的方法抽取80戶家庭召開座談會(huì),間A,B,C各層抽取的戶數(shù)分別是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)訄A與圓相切,且與圓相內(nèi)切,記圓心的軌跡為曲線.

(Ⅰ)求曲線C的方程;

(Ⅱ)設(shè)Q為曲線C上的一個(gè)不在軸上的動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),過點(diǎn)OQ的平行線交曲線CM,N兩個(gè)不同的點(diǎn), 求△QMN面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案