精英家教網 > 高中數學 > 題目詳情

【題目】設函數是定義在上的函數,①若存在,使得成立,則函數上單調遞增。②若存在,使得成立,則函數在上不可能單調遞減. ③若存在對于任意都有成立,則函數在上遞增。④對于任意的,都有成立,則函數在上單調遞減。

則以上真命題的個數為(

A.0B.1C.2D.3

【答案】C

【解析】

根據增函數和減函數的定義,注意關鍵的條件“任意”以及對應的自變量和函數值的關系即可判斷出正確的答案.

①應改為:任意,使得成立,

則函數上單調遞增.故①錯誤.

對于②,由減函數的性質知:必須有任意,使得成立,

函數上才單調遞減,故②正確.

對于③,由于,則,結合,

可知函數上為減函數,故③錯誤.

對于④,等價于對于任意的,都有成立,

則函數在上單調遞減.故④正確.

故選:C

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某工廠每月生產某種產品四件,經檢測發(fā)現(xiàn),工廠生產該產品的合格率為,已知生產一件合格品能盈利100萬元,生產一件次品將會虧損50萬元,假設該產品任何兩件之間合格與否相互沒有影響.

(1)若該工廠制定了每月盈利額不低于250萬元的目標,求該工廠達到盈利目標的概率;

(2)求工廠每月盈利額的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下面使用類比推理,得到的結論正確的是( )

A. 直線,若,則.類比推出:向量,,,若,,則.

B. 三角形的面積為,其中,為三角形的邊長,為三角形內切圓的半徑,類比推出,可得出四面體的體積為,(,,,分別為四面體的四個面的面積,為四面體內切球的半徑)

C. 同一平面內,直線,若,則.類比推出:空間中,直線,若,則.

D. 實數,若方程有實數根,則.類比推出:復數,若方程有實數根,則.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數.

(1)已知函數,求的極值;

(2)已知函數,若存在實數,使得當時,函數的最大值為,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】高中生在被問及“家,朋友聚集的地方,個人空間”三個場所中“感到最幸福的場所在哪里?”這個問題時,從洛陽的高中生中隨機抽取了55人,從上海的高中生中隨機抽取了45人進行答題.洛陽高中生答題情況是選擇家的占、選擇朋友聚集的地方的占、選擇個人空間的占.上海高中生答題情況是:選擇朋友聚集的地方的占、選擇家的占、選擇個人空間的占.

(1)請根據以上調查結果將下面列聯(lián)表補充完整并判斷能否有的把握認為“戀家在家里感到最幸福”與城市有關

在家里最幸福

在其它場所最幸福

合計

洛陽高中生

上海高中生

合計

(2) 從被調查的不“戀家”的上海學生中,用分層抽樣的方法選出4人接受進一步調查從被選出的4 人中隨機抽取2人到洛陽交流學習,求這2人中含有在“個人空間”感到幸福的學生的概率.

,其中d.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】手機廠商推出一款6寸大屏手機,現(xiàn)對500名該手機使用者(200名女性,300名男性)進行調查,對手機進行評分,評分的頻數分布表如下:

女性用戶

分值區(qū)間

[50,60

[60,70

[70,80

[8090

[90,100]

頻數

20

40

80

50

10

男性用戶

分值區(qū)間

[50,60

[60,70

[70,80

[80,90

[90,100]

頻數

45

75

90

60

30

(1)完成下列頻率分布直方圖,并比較女性用戶和男性用戶評分的波動大。ú挥嬎憔唧w值,給出結論即可);

(2)把評分不低于70分的用戶稱為評分良好用戶,能否有的把握認為評分良好用戶與性別有關?

參考附表:

參考公式,其中

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2018年上海國際青少年足球邀請賽將在6月下旬舉行.一體育機構對某高中一年級750名男生,600名女生采用分層抽樣的方法抽取45名學生對足球進行興趣調查,統(tǒng)計數據如下所示:

1:男生

結果

有興趣

無所謂

無興趣

人數

2

3

2:女生

結果

有興趣

無所謂

無興趣

人數

12

2

(1)的值;

(2)運用獨立性檢驗的思想方法分析:請你填寫列聯(lián)表,并判斷是否在犯錯誤的概率不超過的前提下認為非“有興趣”與性別有關系?

男生

女生

總計

有興趣

非有興趣

總計

(3)45人所有無興趣的學生中隨機選取2人,求所選2人中至少有一個女生的概率.

附:,.

0.10

0.05

0.01

2.706

3.841

6.635

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數是函數的導函數,已知,且,則使得成立的的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

已知曲線的參數方程為為參數,),以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)若極坐標為的點在曲線C1上,求曲線C1與曲線C2的交點坐標;

(2)若點的坐標為,且曲線C1與曲線C2交于兩點,求|PB||PD|

查看答案和解析>>

同步練習冊答案