【題目】已知.
(1)若函數(shù)的單調(diào)遞減區(qū)間為,求函數(shù)的圖象在點(diǎn)處的切線方程;
(2)若不等式恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1); (2).
【解析】
(1)根據(jù)單調(diào)減函數(shù),求得實(shí)數(shù)的值,再根據(jù)導(dǎo)數(shù)的幾何意義,即可求得切線的方程;
(2)分離參數(shù),得到恒成立,求出函數(shù)的最大值,即可求得的范圍.
(1)由題意,函數(shù),可得,
函數(shù)的單調(diào)遞減區(qū)間為,可得的解集為,
即方程的兩根分別是,
將或,代入,解得,即,
則,所以,
所以函數(shù)的圖象在點(diǎn)處的切線的斜率為,
所以函數(shù)的圖象在點(diǎn)處的切線的方程為,即.
(2)因?yàn)椴坏仁?/span>恒成立,
即對(duì)于一切恒成立,
整理可得對(duì)于一切恒成立,
設(shè),則,
令,即,解得(舍去),
所以當(dāng)時(shí),單調(diào)遞增,當(dāng)時(shí),單調(diào)遞減,
所以當(dāng)時(shí),取得最大值,
所以,即實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某社區(qū)名居民參加年國(guó)慶活動(dòng),他們的年齡在歲至歲之間,將年齡按、、、、分組,得到的頻率分布直方圖如圖所示.
(1)求的值,并求該社區(qū)參加年國(guó)慶活動(dòng)的居民的平均年齡(每個(gè)分組取中間值作代表);
(2)現(xiàn)從年齡在、的人員中按分層抽樣的方法抽取人,再?gòu)倪@人中隨機(jī)抽取人進(jìn)行座談,用表示參與座談的居民的年齡在的人數(shù),求的分布列和數(shù)學(xué)期望;
(3)若用樣本的頻率代替概率,用隨機(jī)抽樣的方法從該地歲至歲之間的市民中抽取名進(jìn)行調(diào)查,其中有名市民的年齡在的概率為,當(dāng)最大時(shí),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某圓柱的高為2,底面周長(zhǎng)為16,其三視圖如圖所示,圓柱表面上的點(diǎn)在正視圖上的對(duì)應(yīng)點(diǎn)為,圓柱表面上的點(diǎn)在左視圖上的對(duì)應(yīng)點(diǎn)為,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長(zhǎng)度為( )
A. B. C. D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用一張長(zhǎng)為12,寬為8的鐵皮圍成圓柱形的側(cè)面,則這個(gè)圓柱的體積為_____;半徑為R的半圓形鐵皮卷成一個(gè)圓錐筒,那么這個(gè)圓錐筒的高是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,四邊形是邊長(zhǎng)為的菱形,,與交于點(diǎn),平面平面,,,.
(1)求證:平面;
(2)若為等邊三角形,點(diǎn)為的中點(diǎn),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,且.
(1)求角A;
(2)若△ABC外接圓的面積為4π,且△ABC的面積,求△ABC的周長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】回答下列兩個(gè)問題, 并給出例子或證明.
(1)對(duì)任意正整數(shù), 在平面上是否都存在個(gè)不在同一條直線上的點(diǎn), 使得任意兩點(diǎn)間的距離都為正整數(shù)?
(2)在平面上是否存在兩兩不同的無(wú)限點(diǎn)列組成的點(diǎn)集, 使得內(nèi)所有點(diǎn)不在同一條直線上, 且內(nèi)任意兩點(diǎn)間的距離為正整數(shù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中, , 平面,側(cè)面是正方形,點(diǎn)為棱的中點(diǎn),點(diǎn)、分別在棱、上,且, .
(1)證明:平面平面;
(2)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)、分別是橢圓的左、右焦點(diǎn).
(1)若是該橢圓上的一個(gè)動(dòng)點(diǎn),求的最大值與最小值.
(2)是否存在過點(diǎn)的直線與橢圓交于不同的兩點(diǎn),使得?若存在,求直線的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com