【題目】已知等差數(shù)列{an}的公差d>0,則下列四個命題: ①數(shù)列{an}是遞增數(shù)列;
②數(shù)列{nan}是遞增數(shù)列;
③數(shù)列 是遞增數(shù)列;
④數(shù)列{an+3nd}是遞增數(shù)列;
其中正確命題的個數(shù)為(
A.1
B.2
C.3
D.4

【答案】B
【解析】解:∵對于公差d>0的等差數(shù)列{an},an+1﹣an=d>0,∴數(shù)列{an}是遞增數(shù)列成立,是真命題. 對于數(shù)列數(shù)列{nan},第n+1項與第n項的差等于 (n+1)an+1﹣nan=nd+an+1 , 不一定是正實數(shù),故是假命題.
對于數(shù)列 ,第n+1項與第n項的差等于 ,不一定是正實數(shù),故是假命題.
對于數(shù)列數(shù)列{an+3nd},第n+1項與第n項的差等于 an+1+3(n+1)d﹣an﹣3nd=4d>0,
故數(shù)列{an+3nd}是遞增數(shù)列成立,是真命題.
故選:B.
【考點精析】解答此題的關鍵在于理解等差數(shù)列的性質的相關知識,掌握在等差數(shù)列{an}中,從第2項起,每一項是它相鄰二項的等差中項;相隔等距離的項組成的數(shù)列是等差數(shù)列.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在生產過程中,測得纖維產品的纖度(表示纖維粗細的一種量)共有100個數(shù)據(jù),將數(shù)據(jù)分組如表:

分組

頻數(shù)

合計

(1)畫出頻率分布表,并畫出頻率分布直方圖;

2)估計纖度落在中的概率及纖度小于的概率是多少?

3)從頻率分布直方圖估計出纖度的眾數(shù)、中位數(shù)和平均數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩名籃球運動員互不影響地在同一位置投球,命中率分別為,且乙投球2次均未命中的概率為。

(1)乙投球的命中率。

(2)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為,求的分布列和數(shù)學期望。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高科技企業(yè)生產產品A和產品B需要甲、乙兩種新型材料.生產一件產品A需要甲材料1.5kg,乙材料1kg,用5個工時;生產一件產品B需要甲材料0.5kg,乙材料0.3kg,用3個工時.生產一件產品A的利潤為2100元,生產一件產品B的利潤為900元.該企業(yè)現(xiàn)有甲材料150kg,乙材料90kg,求在不超過600個工時的條件下,生產產品A和產品B的利潤之和的最大值(元).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y=mx2﹣2mx+m﹣1(m>0)與x軸的交點為A,B.
(1)求拋物線的頂點坐標;
(2)橫、縱坐標都是整數(shù)的點叫做整點.
①當m=1時,求線段AB上整點的個數(shù);
②若拋物線在點A,B之間的部分與線段AB所圍成的區(qū)域內(包括邊界)恰有6個整點,結合函數(shù)的圖象,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在等比數(shù)列中,已知,且成等差數(shù)列.

(1)求數(shù)列的通項公式;

(2)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面,四邊形是直角梯形,.

(1)求二面角的余弦值;

(2)設是棱上一點,的中點,若與平面所成角的正弦值為,求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和,且2的等差中項.

1)求數(shù)列的通項公式;

2)若,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,網格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,該幾何體由一平面將一圓柱截去一部分所得,則該幾何體的體積為( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案