設(shè)函數(shù)f(x)=x3+ax+b的圖象為曲線C,直線y=kx-2與曲線C相切于點(1,0).則k=______;函數(shù)f(x)的解析式為______.
∵函數(shù)f(x)=x3+ax+b的圖象為曲線C,直線y=kx-2與曲線C相切于點(1,0).
∴直線y=kx-2過點(1,0).即0=k-2即k=2
而f'(x)=3x2+a則f'(1)=3+a=2即a=-1,f(1)=1+a+b=0即b=0
∴函數(shù)f(x)的解析式為f(x)=x3-x
故答案為:2,f(x)=x3-x
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=-x2+ax+1-lnx.
(Ⅰ)若f(x)在x=1處取得極值,求a的值;
(Ⅱ)若f(x)既有極大值又有極小值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)y=
x3
3
-x2+1(0<x<2)的圖象上任意點處切線的傾斜角為α,則α的最小值是( 。
A.
π
4
B.
π
6
C.
6
D.
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax3+cx+d(a≠0)是R上的奇函數(shù),當(dāng)x=1時,f(x)取得極值-2.
(I)求函數(shù)f(x)的解析式;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)x∈[-3,3]時,f(x)<m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=x3-2x2-4x-7,其導(dǎo)函數(shù)為f′(x).
①f(x)的單調(diào)減區(qū)間是(
2
3
,2)

②f(x)的極小值是-15;
③當(dāng)a>2時,對任意的x>2且x≠a,恒有f(x)>f(a)+f′(a)(x-a)
④函數(shù)f(x)滿足f(
2
3
-x)+f(
2
3
+x)=0

其中假命題的個數(shù)為( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=2x3-3(a+1)x2+6ax+8,其中a∈R.已知f(x)在x=3處取得極值.
(1)求f(x)的解析式;
(2)求f(x)在點A(1,16)處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x3-4x2+5x-4.
(1)求曲線f(x)在x=2處的切線方程;
(2)求經(jīng)過點A(2,-2)的曲線f(x)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=2x3-3x2+3.
(1)求曲線y=f(x)在點x=2處的切線方程;
(2)若關(guān)于x的方程f(x)+m=0有三個不同的實根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=lnx,g(x)=
1
2
ax2+bx(a≠0)
(I)若a=-2時,函數(shù)h(x)=f(x)-g(x)在其定義域內(nèi)是增函數(shù),求b的取值范圍;
(II)若a=2,b=1,若函數(shù)k=g(x)-2f(x)-x2在[1,3]上恰有兩個不同零點,求實數(shù)k的取值范圍;
(III)設(shè)函數(shù)f(x)的圖象C1與函數(shù)g(x)的圖象C2交于P,Q兩點,過線段PQ的中點R作x軸的垂線分別交C1、C2于M、N兩點,問是否存在點R,使C1在M處的切線與C2在N處的切線平行?若存在,求出R的橫坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案