如圖,在底面是菱形的四棱錐P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=
2
a,點(diǎn)E在PD上,且PE:ED=2:1,問(wèn)在棱PC上是否存在一點(diǎn)F,使BF∥平面AEC?證明你的結(jié)論.
考點(diǎn):直線與平面平行的性質(zhì)
專(zhuān)題:空間位置關(guān)系與距離
分析:當(dāng)F是棱PC的中點(diǎn)時(shí),BF∥平面AEC.取PE的中點(diǎn)M,連結(jié)FM,則FM∥CE,由已知得知E是MD的中點(diǎn),從而得到平面BFM∥平面AEC,由此BF∥平面AEC.
解答: 解:當(dāng)F是棱PC的中點(diǎn)時(shí),BF∥平面AEC.
證明如下:
取PE的中點(diǎn)M,連結(jié)FM,則FM∥CE ①
由EM=
1
2
PE=ED,點(diǎn)E在PD上,且PE:ED=2:1,知E是MD的中點(diǎn),
連結(jié)BM、BD,設(shè)BD∩AC=O,則O為BD的中點(diǎn),
所以BM∥OE,②
由①、②知,平面BFM∥平面AEC,
又BF?平面BFM,
所以BF∥平面AEC.
點(diǎn)評(píng):本題考查在棱PC上是否存在一點(diǎn)F,使BF∥平面AEC的判斷與證明,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x∈[0,
π
4
],則函數(shù)y=
2
sin(2x+
π
4
)值域?yàn)?div id="fjz1jlr" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
1
x
-x的圖象關(guān)于( 。⿲(duì)稱(chēng).
A、y軸B、x軸
C、坐標(biāo)原點(diǎn)D、直線y=x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)M(a,b)在圓O:x2+y2=1內(nèi),則直線l:ax+by=1與圓O的位置關(guān)系是( 。
A、相切B、相交C、相離D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
2
sin(2x+
π
3
)(x∈R),則該函數(shù)的最小正周期為
 
,最小值為
 
,單調(diào)遞減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將函數(shù)y=2sin2x圖象上的所有點(diǎn)向右平移
π
6
個(gè)單位,然后把圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的
1
2
倍,(縱坐標(biāo)不變)得到y(tǒng)=f(x)的圖象,則f(x)等于( 。
A、2sin(x-
π
6
B、2sin(x-
π
3
C、2sin(4x-
π
6
D、2sin(4x-
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)△ABC的內(nèi)角A、B、C所對(duì)的邊長(zhǎng)分別為a,b,c,且(2b-
3
c)cosA=
3
acosC.
(1)求角A的大;
(2)若a=1,cosB=
4
5
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由曲線y=
x
與y=x3所圍成的封閉圖形的面積是(  )
A、
11
12
B、
5
12
C、
2
3
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示
(1)求函數(shù)f(x)的最小正周期及解析
(2)求函數(shù)f(x)在區(qū)間[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案