已知定義域為R的函數(shù)是奇函數(shù),
(1)求實數(shù)a的值;
(2)判斷該函數(shù)在定義域R上的單調(diào)性(不要求寫證明過程);
(3)若對任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求實數(shù)k的取值范圍;
(4)設關于x的函數(shù)F(x)=f(4x-b)+f(-2x+1)有零點,求實數(shù)b的取值范圍。
解:(1)由題設,需
∴a=1,
,
經(jīng)驗證,f(x)為奇函數(shù),
∴a=1;
(2)該函數(shù)在定義域R上是減函數(shù);
(3)由,
∵f(x)是奇函數(shù),
,
由(2)知f(x)是減函數(shù),
∴原問題轉化為對任意t∈R恒成立,
即為所求;
(4)原函數(shù)零點的問題等價于方程,
由(3),有解,
,
∴當b∈[-1,+∞)時函數(shù)存在零點。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2010•石家莊二模)已知定義域為R的函數(shù)f(x)在(1,+∞)上為減函數(shù),且函數(shù)y=f(x+1)為偶函數(shù),則(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義域為R的函數(shù)f(x)滿足f(x)f(x+2)=5,若f(2)=3,則f(2012)=
5
3
5
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義域為R的函數(shù)f(x)在(4,+∞)上為減函數(shù),且函數(shù)y=f(x)的對稱軸為x=4,則( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義域為R的函數(shù)f(x)=
-2x+a2x+1
是奇函數(shù)
(1)求a值;
(2)判斷并證明該函數(shù)在定義域R上的單調(diào)性;
(3)若對任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求實數(shù)k的取值范圍;
(4)設關于x的函數(shù)F(x)=f(4x-b)+f(-2x+1)有零點,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義域為R的函數(shù)f(x)滿足f(4-x)=-f(x),當x<2時,f(x)單調(diào)遞減,如果x1+x2>4且(x1-2)(x2-2)<0,則f(x1)+f(x2)的值( 。

查看答案和解析>>

同步練習冊答案