18.若二次函數(shù)y=x2+2x+(m+3)有兩個(gè)不同的零點(diǎn),則m的取值范圍是(  )
A.(-∞,-2)B.(-∞,-2]C.(-∞,4)D.(4,+∞)

分析 若二次函數(shù)y=x2+2x+(m+3)有兩個(gè)不同的零點(diǎn),則△>0,解得答案.

解答 解:若二次函數(shù)y=x2+2x+(m+3)有兩個(gè)不同的零點(diǎn),
則方程x2+2x+(m+3)=0有兩個(gè)不同的根,
則△=4-4(m+3)>0,
解得:m∈(-∞,-2);
故選:A.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知{an}中,a1=1,nan+1=(n+1)an,則數(shù)列{an}的通項(xiàng)公式是( 。
A.an=$\frac{1}{n}$B.an=2n-1C.an=nD.an=$\frac{n+1}{2n}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\frac{1}{a-x(1-x)}$的值恒小于1,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,$\frac{1}{4}$)∪($\frac{5}{4}$,+∞)B.(-∞,$\frac{1}{4}$)C.($\frac{5}{4}$,+∞)D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若λ為實(shí)數(shù),若關(guān)于x的方程$\sqrt{{x^2}-λ}+2\sqrt{{x^2}-1}=x$有實(shí)數(shù)解,則λ的取值范圍是[0,$\frac{4}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)$f(x)=a-\frac{1}{x}$是定義在(0,+∞)上的函數(shù).
(1)求證:函數(shù)y=f(x)在(0,+∞)上是增函數(shù);
(2)若函數(shù)y=f(x)在[m,n]上的值域是[2m,2n](m<n),求實(shí)數(shù)a的取值范圍;
(3)若不等式x2|f(x)|≤1對(duì)$x∈[{\frac{1}{3},\frac{1}{2}}]$恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a1=-14,a5+a6=-4,Sn取最小值時(shí)n的值為(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且an與2Sn的等差中項(xiàng)為1.
(1)求數(shù)列{an}的通項(xiàng);
(2)對(duì)任意的n∈N*,不等式$\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+…+\frac{1}{{{a_n}{a_{n+1}}}}≥\frac{λ}{{{a_n}^2}}$恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}-2x+5$.
(Ⅰ)求曲線y=f(x)在點(diǎn)(0,5)處的切線方程;
(Ⅱ)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若平面內(nèi)三點(diǎn)A(1,-a),B(2,a2),C(3,a3)共線,則a=(  )
A.1±$\sqrt{2}$或0B.$\frac{{2-\sqrt{5}}}{2}或0$C.$\frac{{2±\sqrt{5}}}{2}$D.$\frac{{2+\sqrt{5}}}{2}或0$

查看答案和解析>>

同步練習(xí)冊(cè)答案