【題目】已知函數(shù).

)當(dāng)a=3時,求函數(shù)上的最大值和最小值;

)求函數(shù)的定義域,并求函數(shù)的值域.(用a表示)

【答案】,;(的定義域為,的值域為

【解析】

試題()當(dāng)時,求函數(shù)上的最大值和最小值,令,變形得到該函數(shù)的單調(diào)性,求出其值域,再由為增函數(shù),從而求得函數(shù)上的最大值和最小值;()求函數(shù)的定義域,由對數(shù)函數(shù)的真數(shù)大于0求出函數(shù)的定義域,求函數(shù)的值域,函數(shù)的定義域,即的定義域,把的解析式代入后整理,化為關(guān)于的二次函數(shù),對分類討論,由二次函數(shù)的單調(diào)性求最值,從而得函數(shù)的值域.

試題解析:()令,顯然上單調(diào)遞減,故,

,即當(dāng)時,,(在時取得)

,(在時取得)

(II)的定義域為,由題易得:

因為,故的開口向下,且對稱軸,于是:

當(dāng)時,的值域為(;

當(dāng)時,的值域為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點為極點,軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.

(1)求直線的普通方程與曲線的直角坐標(biāo)方程;

(2)若直線與曲線交于,兩點,且,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三年級有1000名學(xué)生,其中理科班學(xué)生占80%,全體理科班學(xué)生參加一次考試,考試成績近似地服從正態(tài)分布N7236),若考試成績不低于60分為及格,則此次考試成績及格的人數(shù)約為(

(參考數(shù)據(jù):若ZNμ,σ2),則PμσZμ+σ)=0.6826,Pμ2σZμ+2σ)=0.9544,Pμ3σZμ+3σ)=0.9974

A.778B.780C.782D.784

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】改革開放以來,人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來,移動支付已成為主要支付方式之一.為了解某校學(xué)生上個月A,B兩種移動支付方式的使用情況,從全校學(xué)生中隨機抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學(xué)生的支付金額分布情況如下:

交付金額(元)

支付方式

0,1000]

1000,2000]

大于2000

僅使用A

18

9

3

僅使用B

10

14

1

(Ⅰ)從全校學(xué)生中隨機抽取1人,估計該學(xué)生上個月A,B兩種支付方式都使用的概率;

(Ⅱ)從樣本僅使用A和僅使用B的學(xué)生中各隨機抽取1人,以X表示這2人中上個月支付金額大于1000元的人數(shù),求X的分布列和數(shù)學(xué)期望;

(Ⅲ)已知上個月樣本學(xué)生的支付方式在本月沒有變化.現(xiàn)從樣本僅使用A的學(xué)生中,隨機抽查3人,發(fā)現(xiàn)他們本月的支付金額都大于2000元.根據(jù)抽查結(jié)果,能否認(rèn)為樣本僅使用A的學(xué)生中本月支付金額大于2000元的人數(shù)有變化?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1,F2為橢圓Ey21的左、右焦點,過點P(﹣2,0)的直線l與橢圓E有且只有一個交點T

1)求F1TF2的面積;

2)求證:光線被直線反射后經(jīng)過F2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)fx)是定義在R上的偶函數(shù),且對任意的xR恒有fx+1)=fx1),已知當(dāng)x[0,1]時,fx)=(1x,則

2是函數(shù)fx)的一個周期;

②函數(shù)fx)在(12)上是減函數(shù),在(2,3)上是增函數(shù);

③函數(shù)fx)的最大值是1,最小值是0;

x1是函數(shù)fx)的一個對稱軸;

⑤當(dāng)x∈(3,4)時,fx)=(x3.

其中所有正確命題的序號是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為為參數(shù),在以坐標(biāo)原點為極點,x軸非負(fù)半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為

寫出的普通方程和的直角坐標(biāo)方程;

相交于AB兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點分別為,短軸的兩個端點分別為,點在橢圓上,且滿足,當(dāng)變化時,給出下列三個命題:

①點的軌跡關(guān)于軸對稱;②的最小值為2;

③存在使得橢圓上滿足條件的點僅有兩個,

其中,所有正確命題的序號是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)求的單調(diào)區(qū)間;

2)設(shè),且有兩個極值點其中,求的最小值;

3)證明:nN*,n≥2).

查看答案和解析>>

同步練習(xí)冊答案