【題目】某工廠甲、乙兩個車間包裝同一種產(chǎn)品,在自動包裝傳送帶上每隔1小時抽一包產(chǎn)品,稱其重量(單位:克)是否合格,分別記錄抽查數(shù)據(jù),獲得重量數(shù)據(jù)的莖葉圖如圖.

(1)根據(jù)樣品數(shù)據(jù),計算甲、乙兩個車間產(chǎn)品重量的均值與方差,并說明哪個車間的產(chǎn)品的重量相對較穩(wěn)定;
(2)若從乙車間6件樣品中隨機抽取兩件,求所抽取的兩件樣品的重量之差不超過2克的概率.

【答案】
(1)解:

,

=21,

= ,

= ,S2<S2,

∴甲車間的產(chǎn)品的重量相對較穩(wěn)定.


(2)解:從乙車間6件樣品中隨機抽取兩件,共有15種不同的取法:(108,109),

(108,110),(108,112),(108,115),(108,124),(109,110),

(109,112),(109,115),(109,124),(110,112),(110,115),

(110,124),(112,115),(112,124),(115,124).

設A表示隨機事件“所抽取的兩件樣品的重量之差不超過2克”,

則A的基本事件有4種:(108,109),(108,110),(109,110),(110,112).

故所求概率為


【解析】(1)根據(jù)莖葉圖所給的兩組數(shù)據(jù),分別做出這兩組數(shù)據(jù)的平均數(shù),再作出這兩組數(shù)據(jù)的方差,得到甲車間的產(chǎn)品的重量相對較穩(wěn)定.(2)由題意知本題是一個古典概型的概率,試驗發(fā)生包含的事件數(shù),可以通過列舉得到共有15種結果,而滿足條件的事件數(shù)也通過列舉得到,兩個做比值得到概率.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知⊙O中,直徑AB垂直于弦CD,垂足為M,PCD延長線上一點,PE切⊙O于點E,連接BECD于點F,證明:

(1)∠BFM=∠PEF;

(2)PF2PD·PC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位N名員工參加“社區(qū)低碳你我他”活動,他們的年齡在25歲至50歲之間,按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布圖如圖所示,下表是年齡的頻率分布表.

(1)現(xiàn)要從年齡較小的第組中用分層抽樣的方法抽取6人,則年齡第組人數(shù)分別是多少?

(2)在(1)的條件下,從這6中隨機抽取2參加社區(qū)宣傳交流活動,X表示第3組中抽取的人數(shù),求X的分布列和期望值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,與函數(shù) 的定義域相同的函數(shù)是(
A.y(x)=x?ex
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+bx+1(a,b為實數(shù),a≠0,x∈R)
(1)若函數(shù)f(x)的圖象過點(﹣2,1),且函數(shù)f(x)有且只有一個零點,求f(x)的表達式;
(2)在(1)的條件下,當x∈(﹣1,2)時,g(x)=f(x)﹣kx是單調(diào)函數(shù),求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,若關于的方程恰好有 4 個不相等的實數(shù)解,則實數(shù)的取值范圍為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】劉徽(約公元 225 —295 年)是魏晉時期偉大的數(shù)學家,中國古典數(shù)學理論的奠基人之一,他的杰作《九章算術注》和《海島算經(jīng)》是中國寶貴的古代數(shù)學遺產(chǎn). 《九章算術·商功》中有這樣一段話:斜解立方,得兩壍堵. 斜解壍堵,其一為陽馬,一為鱉臑.” 劉徽注:此術臑者,背節(jié)也,或曰半陽馬,其形有似鱉肘,故以名云.” 其實這里所謂的鱉臑(biē nào,就是在對長方體進行分割時所產(chǎn)生的四個面都為直角三角形的三棱錐. 如圖,在三棱錐中, 垂直于平面 垂直于,且 ,則三棱錐的外接球的球面面積為__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點P(2,0)及圓C:x2+y2﹣6x+4y+4=0.
(1)設過P直線l1與圓C交于M、N兩點,當|MN|=4時,求以MN為直徑的圓Q的方程;
(2)設直線ax﹣y+1=0與圓C交于A,B兩點,是否存在實數(shù)a,使得過點P(2,0)的直線l2垂直平分弦AB?若存在,求出實數(shù)a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合M={(x,y)|y=f(x)},若對于任意(x1 , y1)∈M,存在(x2 , y2)∈M,使得x1x2+y1y2=0成立,則稱集合M是“垂直對點集”.給出下列四個集合:
①M={ };
②M={(x,y)|y=sinx+1};
③M={(x,y)|y=log2x};
④M={(x,y)|y=ex﹣2}.
其中是“垂直對點集”的序號是(
A.①②
B.②③
C.①④
D.②④

查看答案和解析>>

同步練習冊答案