(I)解:∵a
n=2a
n-1+n-2(n≥2),∴a
n+n=2(a
n-1+n-1)
∴數(shù)列{a
n+n}是以首項a
1+1,公比為2的等比數(shù)列,即a
n+n=2×2
n-1=2
n∴a
n=2
n-n
(II)證明:∵4
Sn-n=(a
n+n)
bn(n∈N
*)
∴4
Sn-n=2
nbn,
∴2S
n-2n=nb
n,…①
∴2S
n+1-2(n+1)=(n+1)b
n+1,…②
②-①,得2(b
n+1-1)=(n+1)b
n+1-nb
n,
∴(n-1)b
n+1-nb
n+2=0 …③
∴nb
n+2-(n+1)b
n+1+2=0 …④
④-③得nb
n+2-2nb
n+1+nb
n=0
∴b
n+2-2b
n+1+b
n=0
∴b
n+2-b
n+1=b
n+1-b
n∴{b
n}是等差數(shù)列.
∵b
1=2,b
2=4,∴b
n=2n
∴
<1+
+…+
=1+
<
.
分析:(I)根據(jù)a
n=2a
n-1+n-2(n≥2),可得數(shù)列{a
n+n}是以首項a
1+1,公比為2的等比數(shù)列,從而可求數(shù)列{a
n}的通項公式;
(II)利用4
Sn-n=(a
n+n)
bn(n∈N
*),再寫一式,兩式相減可得2(b
n+1-1)=(n+1)b
n+1-nb
n,同樣再寫一式,兩式相減,可得{b
n}是等差數(shù)列,進而可得b
n=2n,由此可證結(jié)論.
點評:本題考查數(shù)列遞推式,考查數(shù)列的通項,考查不等式的證明,確定數(shù)列為等差數(shù)列,適當放縮是關(guān)鍵.