【題目】已知.

1)討論函數(shù)的單調(diào)性;

2)若有兩個極值點,證明.

【答案】1)見解析;(2)見解析.

【解析】

1)首先求出,再令,解得,,比較的大小關系即可求出函數(shù)的單調(diào)區(qū)間.

2)首先根據(jù)有兩個極值得到,再求出的解析式,證明恒小于即可.

1,且函數(shù)的定義域為.

,得,.

①當,即時,

,為減函數(shù);,為增函數(shù).

②當,即時,

,,為增函數(shù);,為減函數(shù);

,為增函數(shù);

③若,即時,,為增函數(shù);

②當,即時,

,為增函數(shù);,,為減函數(shù);

,,為增函數(shù).

綜上所述,當時,函數(shù)的減區(qū)間為,增區(qū)間為;

時,函數(shù)的增區(qū)間為,減區(qū)間為

時,函數(shù)的增區(qū)間為,無減區(qū)間;

時,函數(shù)的增區(qū)間為,減區(qū)間為

2)由(1)知當時,有兩個極值點.

.

.

換元令,設,

上單調(diào)遞減,在上單調(diào)遞增,.

恒成立,

恒成立

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知某運動員每次投籃命中的概率低于,現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產(chǎn)生09之間取整數(shù)值的隨機數(shù),指定1,2,3,4表示命中,5,678,9,0表示不命中;再以每三個隨機數(shù)為一組,代表三次投籃的結果.經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù):

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為(

A.0.35B.0.25C.0.20D.0.15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列滿足.

(1)求的通項公式;

(2)設等比數(shù)列滿足,問: 與數(shù)列的第幾項相等?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以直角坐標系的原點O為極點,x軸的正半軸為極軸建立極坐標系,已知點P的直角坐標為,點M的極坐標為,若直線l過點P,且傾斜角為,圓CM為圓心,1為半徑.

1)求直線l的參數(shù)方程和圓C的極坐標方程.

2)設直線l與圓C相交于AB兩點,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,點的極坐標為,直線的極坐標方程為

(1)求直線的直角坐標方程與曲線的普通方程;

(2)若是曲線上的動點,為線段的中點,求點到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司甲、乙兩個班組分別試生產(chǎn)同一種規(guī)格的產(chǎn)品,已知此種產(chǎn)品的質(zhì)量指標檢測分數(shù)不小于70時,該產(chǎn)品為合格品,否則為次品,現(xiàn)隨機抽取兩個班組生產(chǎn)的此種產(chǎn)品各100件進行檢測,其結果如下表:

質(zhì)量指標檢測分數(shù)

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

甲班組生產(chǎn)的產(chǎn)品件數(shù)

7

18

40

29

6

乙班組生產(chǎn)的產(chǎn)品件數(shù)

8

12

40

32

8

(1)根據(jù)表中數(shù)據(jù),估計甲、乙兩個班組生產(chǎn)該種產(chǎn)品各自的不合格率;

(2)根據(jù)以上數(shù)據(jù),完成下面的2×2列聯(lián)表,并判斷是否有95%的把握認為該種產(chǎn)品的質(zhì)量與生產(chǎn)產(chǎn)品的班組有關?

甲班組

乙班組

合計

合格品

次品

合計

(3)若按合格與不合格比例,從甲班組生產(chǎn)的產(chǎn)品中抽取4件產(chǎn)品,從乙班組生產(chǎn)的產(chǎn)品中抽取5件產(chǎn)品,記事件A:從上面4件甲班組生產(chǎn)的產(chǎn)品中隨機抽取2件,且都是合格品;事件B:從上面5件乙班組生產(chǎn)的產(chǎn)品中隨機抽取2件,一件是合格品,一件是次品,試估計這兩個事件哪一種情況發(fā)生的可能性大.

附:

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知復數(shù)集合 ,其中為虛數(shù)單位,若復數(shù),則對應的點在復平面內(nèi)所形成圖形的面積為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知表1和表2是某年部分日期的天安門廣場升旗時刻表.

表1:某年部分日期的天安門廣場升旗時刻表

日期

升旗時刻

日期

升旗時刻

日期

升旗時刻

日期

升旗時刻

1月1日

7:36

4月9日

5:46

7月9日

4:53

10月8日

6:17

1月21日

7:31

4月28日

5:19

7月27日

5:07

10月26日

6:36

2月10日

7:14

5月16日

4:59

8月14日

5:24

11月13日

6:56

3月2日

6:47

6月3日

4:47

9月2日

5:42

12月1日

7:16

3月22日

6:15

6月22日

4:46

9月20日

5:59

12月20日

7:31

表2:某年2月部分日期的天安門廣場升旗時刻表

日期

升旗時刻

日期

升旗時刻

日期

升旗時刻

2月1日

7:23

2月11日

7:13

2月21日

6:59

2月3日

7:22

2月13日

7:11

2月23日

6:57

2月5日

7:20

2月15日

7:08

2月25日

6:55

2月7日

7:17

2月17日

7:05

2月27日

6:52

2月9日

7:15/p>

2月19日

7:02

2月28日

6:49

(1)從表1的日期中隨機選出一天,試估計這一天的升旗時刻早于7:00的概率;

(2)甲,乙二人各自從表2的日期中隨機選擇一天觀看升旗,且兩人的選擇相互獨立.記為這兩人中觀看升旗的時刻早于7:00的人數(shù),求的分布列和數(shù)學期望

(3)將表1和表2中的升旗時刻化為分數(shù)后作為樣本數(shù)據(jù)(如7:31化為).記表2中所有升旗時刻對應數(shù)據(jù)的方差為,表1和表2中所有升旗時刻對應數(shù)據(jù)的方差為,判斷的大。ㄖ恍鑼懗鼋Y論)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某調(diào)查機構對全國互聯(lián)網(wǎng)行業(yè)進行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)者崗位分布條形圖,則下列結論中不一定正確的是( ).

注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.

A. 互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上

B. 互聯(lián)網(wǎng)行業(yè)中從事技術崗位的人數(shù)超過總人數(shù)的20%

C. 互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)90后比80前多

D. 互聯(lián)網(wǎng)行業(yè)中從事技術崗位的人數(shù)90后比80后多

查看答案和解析>>

同步練習冊答案