8、例5.已知函數(shù)f(x)對(duì)其定義域內(nèi)的任意兩個(gè)數(shù)a,b,當(dāng)a<b時(shí),都有f(a)<f(b),證明:f(x)=0至多有一個(gè)實(shí)根.
分析:正面證明難以下手,考慮用反證法,對(duì)于含有“至多”等形式的命題,?紤]用反證法.
解答:解:假設(shè)f(x)=0至少有兩個(gè)不同的實(shí)數(shù)根x1,x2,不妨假設(shè)x1<x2,
由方程的定義可知:f(x1)=0,f(x2)=0
即f(x1)=f(x2
由已知x1<x2時(shí),有f(x1)<f(x2)這與式①矛盾
因此假設(shè)不能成立
故原命題成立.
注:反證法時(shí)對(duì)結(jié)論進(jìn)行的否定要正確,注意區(qū)別命題的否定與否命題.
點(diǎn)評(píng):反證法是一種簡(jiǎn)明實(shí)用的數(shù)學(xué)證題方法,也是一種重要的數(shù)學(xué)思想.相對(duì)于直接證明來(lái)講,反證法是一種間接證法.它是數(shù)學(xué)學(xué)習(xí)中一種很重要的證題方法.其實(shí)質(zhì)是運(yùn)用“正難則反”的策略,從否定結(jié)論出發(fā),通過(guò)邏輯推理,導(dǎo)出矛盾.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

例4、已知函數(shù)y=f(x)是定義在R上的周期函數(shù),周期T=5,函數(shù)y=f(x)(-1≤x≤1)是奇函數(shù).又知y=f(x)在[0,1]上是一次函數(shù),在[1,4]上是二次函數(shù),且在x=2時(shí)函數(shù)取得最小值-5.
①證明:f(1)+f(4)=0;②求y=f(x),x∈[1,4]的解析式;③求y=f(x)在[4,9]上的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年四川省成都七中高三數(shù)學(xué)專(zhuān)項(xiàng)訓(xùn)練:從集合到函數(shù)周期(解析版) 題型:解答題

例4、已知函數(shù)y=f(x)是定義在R上的周期函數(shù),周期T=5,函數(shù)y=f(x)(-1≤x≤1)是奇函數(shù).又知y=f(x)在[0,1]上是一次函數(shù),在[1,4]上是二次函數(shù),且在x=2時(shí)函數(shù)取得最小值-5.
①證明:f(1)+f(4)=0;②求y=f(x),x∈[1,4]的解析式;③求y=f(x)在[4,9]上的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:高考數(shù)學(xué)一輪復(fù)習(xí)必備(第09課時(shí)):第二章 函數(shù)-函數(shù)的解析式及定義域(解析版) 題型:解答題

例4、已知函數(shù)y=f(x)是定義在R上的周期函數(shù),周期T=5,函數(shù)y=f(x)(-1≤x≤1)是奇函數(shù).又知y=f(x)在[0,1]上是一次函數(shù),在[1,4]上是二次函數(shù),且在x=2時(shí)函數(shù)取得最小值-5.
①證明:f(1)+f(4)=0;②求y=f(x),x∈[1,4]的解析式;③求y=f(x)在[4,9]上的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:高考數(shù)學(xué)一輪復(fù)習(xí)必備(第05課時(shí)):第一章 集合與簡(jiǎn)易邏輯-簡(jiǎn)易邏輯(解析版) 題型:解答題

例5.已知函數(shù)f(x)對(duì)其定義域內(nèi)的任意兩個(gè)數(shù)a,b,當(dāng)a<b時(shí),都有f(a)<f(b),證明:f(x)=0至多有一個(gè)實(shí)根.

查看答案和解析>>

同步練習(xí)冊(cè)答案