在每年的春節(jié)后,某市政府都會發(fā)動公務(wù)員參與到植樹活動中去.為保證樹苗的質(zhì)量,該市林管部門在植樹前,都會在植樹前對樹苗進(jìn)行檢測.現(xiàn)從甲乙兩種樹苗中各抽測了10株樹苗的高度,量出樹苗的高度如下(單位:厘米):
甲:
乙:
(1)根據(jù)抽測結(jié)果,完成答題卷中的莖葉圖,并根據(jù)你填寫的莖葉圖,對甲、乙兩種樹苗的高度作比較,寫出兩個統(tǒng)計結(jié)論;

(2)設(shè)抽測的10株甲種樹苗高度平均值為,將這10株樹苗的高度依次輸入按程序框圖進(jìn)行的運(yùn)算,問輸出的大小為多少?并說明的統(tǒng)計學(xué)意義.
 

(1)莖葉圖:

統(tǒng)計結(jié)論:
①.甲種樹苗的平均高度小于乙種樹苗的平均高度; 
②.甲種樹苗比乙種樹苗長得更整齊;
③.甲種樹苗的中位數(shù)為,乙種樹苗的中位數(shù)為;
④.甲種樹苗的高度基本上是對稱的,而且大多數(shù)集中在均值附近,乙種樹苗的高度分布較為分散.
(在以上結(jié)論中,寫兩個即可)
(2),表示株甲樹苗高度的方差,是描述樹苗高度離散程度的量.
值越小,表示長得越整齊,值越大,表示長得越參差不齊.

解析試題分析:(1)本題中,莖葉圖的莖表示十位上的數(shù)字(題中已給出),葉表示個位上的數(shù)字,故將甲乙兩種樹苗的高度的個位數(shù)字填在兩邊相應(yīng)位置上.統(tǒng)計結(jié)論從平均數(shù)、方差、中位數(shù)、眾數(shù)入手,分析樹苗的平均高度及集中度.
(Ⅱ)從框圖可以看出,該程序是求樹苗高度的方差,所以首先求出甲樹苗的高度的平均值,然后求出方差.是描述樹苗高度離散程度的量.值越小,表示長得越整齊,值越大,表示長得越參差不齊.
試題解析:(1)莖葉圖:

統(tǒng)計結(jié)論:
①.甲種樹苗的平均高度小于乙種樹苗的平均高度; 
②.甲種樹苗比乙種樹苗長得更整齊;
③.甲種樹苗的中位數(shù)為,乙種樹苗的中位數(shù)為;
④.甲種樹苗的高度基本上是對稱的,而且大多數(shù)集中在均值附近,乙種樹苗的高度分布較為分散.
(在以上結(jié)論中,每個結(jié)論2分,但總分不超過4分)
(2)       8分
                              10分
表示株甲樹苗高度的方差,是描述樹苗高度離散程度的量.
值越小,表示長得越整齊,值越大,表示長得越參差不齊.       12分
考點(diǎn):統(tǒng)計及樣本數(shù)據(jù)的基本數(shù)字特征.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某班同學(xué)利用寒假進(jìn)行社會實(shí)踐,對年齡在的人群隨機(jī)抽取人進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,若生活習(xí)慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:
   
(1)補(bǔ)全頻率分布直方圖,并求的值;
(2)從年齡在的“低碳族”中采用分層抽樣法抽取6人參加戶外低碳體驗(yàn)活動,其中選取2人作為領(lǐng)隊,求選取的2名領(lǐng)隊中恰有1人年齡在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)為了解某校今年高一年級女生的身體素質(zhì)狀況,從該校高一年級女生中抽取了一部分學(xué)生進(jìn)行“擲鉛球”的項(xiàng)目測試,成績低于5米為不合格,成績在5至7米(含5米不含7米)的為及格,成績在7米至11米(含7米和11米,假定該校高一女生擲鉛球均不超過11米)為優(yōu)秀.把獲得的所有數(shù)據(jù),分成五組,畫出的頻率分布直方圖如圖所示.已知有4名學(xué)生的成績在9米到11米之間.

(1)求實(shí)數(shù)的值及參加“擲鉛球”項(xiàng)目測試的人數(shù);
(2)若從此次測試成績最好和最差的兩組中隨機(jī)抽取2名學(xué)生再進(jìn)行其它項(xiàng)目的測試,求所抽取的2名學(xué)生自不同組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某市為了了解今年高中畢業(yè)生的體能狀況,從本市某校高中畢業(yè)班中抽取一個班進(jìn)行鉛球測試,成績在8.0米(精確到0.1米)以上的為合格.把所得數(shù)據(jù)進(jìn)行整理后,分成6組畫出頻率分布直方圖的一部分(如圖),已知從左到右前5個小組的頻率分別為0.04,0.10,0.14,0.28,0.30,第6小組的頻數(shù)是7.

(Ⅰ)求這次鉛球測試成績合格的人數(shù);
(Ⅱ)用此次測試結(jié)果估計全市畢業(yè)生的情況.若從今年的高中畢業(yè)生中隨機(jī)抽取兩名,記表示兩人中成績不合格的人數(shù),求的分布列及數(shù)學(xué)期望;
(Ⅲ)經(jīng)過多次測試后,甲成績在8~10米之間,乙成績在9.5~10.5米之間,現(xiàn)甲、乙各投擲一次,求甲比乙投擲遠(yuǎn)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某高校從今年參加自主招生考試的學(xué)生中隨機(jī)抽取容量為的學(xué)生成績樣本,得到頻率分布表如下:

組數(shù)
分組
頻數(shù)
頻率
 第一組
[230,235)
8
0.16
第二組
[235,240)

0.24
第三組
[240,245)
15

第四組
[245,250)
10
0.20
第五組
[250,255]
5
0.10
合計

1.00
(1)求的值;
(2)為了選拔出更加優(yōu)秀的學(xué)生,該高校決定在第三、四、五組中用分層抽樣的方法抽取6名學(xué)生進(jìn)行第二輪考核,分別求第三、四、五組參加考核的人數(shù);
(3)在(2)的前提下,高校決定從這6名學(xué)生中擇優(yōu)錄取2名學(xué)生,求2人中至少有1人是第四組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

改革開放以來,我國高等教育事業(yè)有了突飛猛進(jìn)的發(fā)展,有人記錄了某村2001到2005年五年間每年考入大學(xué)的人數(shù),為了方便計算,2001年編號為1,2002年編號為2,……,2005年編號為5,數(shù)據(jù)如下:

年份(x)
 
1
 
2
 
3
 
4
 
5
 
人數(shù)(y)
 
3
 
5
 
8
 
11
 
13
 
(1)從這5年中隨機(jī)抽取兩年,求考入大學(xué)的人數(shù)至少有年多于10人的概率.
(2)根據(jù)這年的數(shù)據(jù),利用最小二乘法求出關(guān)于的回歸方程,并計算第年的估計值。
參考:用最小二乘法求線性回歸方程系數(shù)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(在數(shù)學(xué)趣味知識培訓(xùn)活動中,甲、乙兩名學(xué)生的6次培訓(xùn)成績?nèi)缦虑o葉圖所示:

(Ⅰ)從甲、乙兩人中選擇1人參加數(shù)學(xué)趣味知識競賽,你會選哪位?請運(yùn)用統(tǒng)計學(xué)的知識說明理由;
(II)從乙的6次培訓(xùn)成績中隨機(jī)選擇2個,記被抽到的分?jǐn)?shù)超過115分的個數(shù)為,試求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名。右圖是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖。將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”,已知“體育迷”中有10名女性。
(Ⅰ)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料判斷你是否有95%以上的把握認(rèn)為“體育迷”與性別有關(guān)?

 
非體育迷
體育迷
合計

 
 
 

 
 
 
合計
 
 
 
(Ⅱ)將日均收看該體育項(xiàng)目不低于50 分鐘的觀眾稱為“超級體育迷”,已知“超級體育迷”中有2名女性,若從“超級體育迷”中任意選取2人,求至少有1名女性觀眾的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某電視臺2012年舉辦了“中華好聲音”大型歌手選秀活動,過程分為初賽、復(fù)賽和決賽,經(jīng)初賽進(jìn)入復(fù)賽的40名選手被平均分成甲、乙兩個班。下面是根據(jù)這40名選手參加復(fù)賽時獲得的100名大眾評審的支持票數(shù)制成的莖葉圖:

賽制規(guī)定:參加復(fù)賽的40名選手中,獲得的支持票數(shù)排在前5名的選手可進(jìn)入決賽,若第5名出現(xiàn)并列,則一起進(jìn)入決賽;另外,票數(shù)不低于95票的選手在決賽時擁有“優(yōu)先挑戰(zhàn)權(quán)”。
(Ⅰ)分別求出甲、乙兩班的大眾評審的支持票數(shù)的中位數(shù)、眾數(shù)與極差;
從進(jìn)入決賽的選手中隨機(jī)抽出3名,求其中恰有1名擁有“優(yōu)先挑戰(zhàn)權(quán)”的概率.

查看答案和解析>>

同步練習(xí)冊答案