n |
p1+p2+…+pn |
1 |
2n+1 |
an |
2n+1 |
an |
2n+1 |
an |
2n+1 |
an |
2n+1 |
1 |
a1 |
1 |
2×1+1 |
an |
2n+1 |
4n-1 |
2n+1 |
3 |
2n+1 |
an+1 |
2n+3 |
3 |
2n+3 |
3 |
2n+1 |
3 |
2n+3 |
an |
2n+1 |
an |
2n+1 |
3 |
3 |
3 |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
4 |
y2 |
5 |
P1P2 |
3 |
4 |
3 |
2 |
OP1 |
OP2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
4 |
y2 |
5 |
P1P2 |
3 |
4 |
3 |
2 |
OP1 |
OP2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
4 |
y2 |
5 |
P1P2 |
2 |
3 |
op1 |
OP2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年湖北鄂州5月模擬理)已知兩定點A(-3,0),B(3,0),動圓M與直線AB相切于點N,且,現(xiàn)分別過點A、B作動圓M的切線(異于直線AB),兩切線相交于點P.
⑴求動點P的軌跡方程;
⑵若直線xmy3=0截動點P的軌跡所得的弦長為5,求m的值;
⑶設(shè)過軌跡上的點P的直線與兩直線分別交于點P1、P2,且點P分有向線段所成的比為λ(λ>0),當(dāng)λ∈時,求的最值.查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年四川省南充高中第二次高考適應(yīng)性考試數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com