已知橢圓C:=1(ab>0)的左、右焦點為F1、F2,離心率為e.直線lyexax軸、y軸分別交于點A、BM是直線l與橢圓C的一個公共點,P是點F1關于直線l的對稱點,設λ

(Ⅰ)證明:λ1-e2;

(Ⅱ)若,△PF1F2的周長為6;寫出橢圓C的方程.

答案:
解析:

  ()證法一:因為A、B分別是直線lx軸、y軸的交點,

所以A、B的坐標分別是

  所以點M的坐標是().由

  即

  證法二:因為AB分別是直線lx軸、y軸的交點,所以A、B的坐標分別是M的坐標是

  所以因為點M在橢圓上,所以

  即

  解得

  ()時,,所以由△MF1F的周長為6,得

  所以橢圓方程為


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(08年泉州一中適應性練習文)(12分)已知橢圓C=1(a>b>0)的離心率為,過右焦點F且斜率為1的直線交橢圓CA,B兩點,N為弦AB的中點。

(1)求直線ONO為坐標原點)的斜率KON

(2)對于橢圓C上任意一點M ,試證:總存在角∈R)使等式:cossin成立。

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年湖北重點中學4月月考理)(13分

已知橢圓C=1(a>b>0)的離心率為,過右焦點F且斜率為1的直線交橢圓CA,B兩點,N為弦AB

(1)求直線ONO為坐標原點)的斜率KON ;

1)           (2)對于橢圓C上任意一點M ,試證:總存在角∈R)使等式:cossin成立

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C=1(a>b>0)的離心率為,過右焦點F且斜率為1的直線交橢圓CA,B兩點,N為弦AB的中點。

(1)求直線ONO為坐標原點)的斜率KON

(2)對于橢圓C上任意一點M ,試證:總存在角∈R)使等式:cossin成立。w.w.w.k.s.5.u.c.o.m

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C=1(a>b>0)的離心率為,過右焦點F且斜率為1的直線交橢圓CAB兩點,N為弦AB的中點。

(1)求直線ONO為坐標原點)的斜率KON ;

(2)對于橢圓C上任意一點M ,試證:總存在角∈R)使等式:cossin成立。

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆湖北省武漢市高三9月調研測試理科數(shù)學試卷(解析版) 題型:解答題

已知橢圓C:=1(a>b>0)的離心率為,過右焦點F的直線l與C相交于A、B兩點,當l的斜率為1時,坐標原點O到l的距離為

(Ⅰ)求a,b的值;

(Ⅱ)C上是否存在點P,使得當l繞F轉到某一位置時,有成立?若存在,求出所有的P的坐標與l的方程;若不存在,說明理由.

 

查看答案和解析>>

同步練習冊答案