已知A1,A2,A3,…,A10等10所高校舉行的自主招生考試,某同學(xué)參加每所高校的考試獲得通過的概率均為
(Ⅰ)如果該同學(xué)10所高校的考試都參加,試求恰有2所通過的概率;
(Ⅱ)假設(shè)該同學(xué)參加每所高?荚囁璧馁M(fèi)用均為a元,該同學(xué)決定按A1,A2,A3,…,A10順序參加考試,一旦通過某所高校的考試,就不再參加其它高校的考試,試求該同學(xué)參加考試所需費(fèi)用ξ的分布列及數(shù)學(xué)期望.
【答案】分析:(Ⅰ)由該同學(xué)通過各?荚嚨母怕示鶠,能求出該同學(xué)恰好通過2所高校自主招生考試的概率.
(Ⅱ)設(shè)該同學(xué)共參加了i次考試的概率為Pi(1≤i≤10,i∈Z).由,能求出該同學(xué)參加考試所需費(fèi)用ξ的分布列,由此能求出該同學(xué)參加考試所需費(fèi)用ξ的分布列及數(shù)學(xué)期望.
解答:解:(Ⅰ)因?yàn)樵撏瑢W(xué)通過各?荚嚨母怕示鶠
所以該同學(xué)恰好通過2所高校自主招生考試的概率為
=.…(4分)
(Ⅱ)設(shè)該同學(xué)共參加了i次考試的概率為Pi(1≤i≤10,i∈Z).
,
∴所以該同學(xué)參加考試所需費(fèi)用ξ的分布列如下:
ξa2a3a4a5a6a7a8a9a10a
P
…(7分)
所以,…(8分)
,…(1)
,…(2)
由(1)-(2)得,
所以,…(11分)
所以
====(元).…(13分)
點(diǎn)評(píng):本題主要考查概率與統(tǒng)計(jì)的基礎(chǔ)知識(shí),考查數(shù)據(jù)處理能力、運(yùn)算求解能力以及應(yīng)用用意識(shí),考查必然與或然思想、分類與整合思想等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a1>a2>a3>0,則使得(1-aix)2<1(i=1,2,3)都成立的x取值范圍是( 。
A、(0,
1
a1
)
B、(0,
2
a1
)
C、(0,
1
a3
)
D、(0,
2
a3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a1,a2,a3,…,a30是首項(xiàng)為1,公比為2的等比數(shù)列.對(duì)于滿足0<k<30的整數(shù)k,數(shù)列b1,b2,b3,…,b30bn=
an+k,1≤n≤30-k
an+k-30,30-k<n≤30
確定.記C=a1b1+a2b2+…+a30b30
(Ⅰ)當(dāng)k=1時(shí),求C的值;
(Ⅱ)求C最小時(shí)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

6、已知a1,a2,a3為一等差數(shù)列,b1,b2,b3為一等比數(shù)列,
且這6個(gè)數(shù)都為實(shí)數(shù),則下面四個(gè)結(jié)論:
①a1<a2與a2>a3可能同時(shí)成立;
②b1<b2與b2>b3可能同時(shí)成立;
③若a1+a2<0,則a2+a3<0;
④若b1•b2<0,則b2•b3<0其中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

10、已知a1,a2,a3,…,a8為各項(xiàng)都大于零的數(shù)列,則“a1+a8<a4+a5”是“a1,a2,a3,…,a8不是等比數(shù)列”的(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a1,a2,a3,…,a10這10個(gè)數(shù)的和為45,則當(dāng)函數(shù)f(x)=
10i=1
(x-ai)2
取得最小值時(shí),此時(shí)x的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案