如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直,EF∥AC,AB=,CE=EF=1.

(1)求證:AF∥平面BDE;
(2)求證:CF⊥平面BDE.
(1)見(jiàn)解析  (2)見(jiàn)解析

證明:(1)設(shè)AC與BD交于點(diǎn)G.

因?yàn)镋F∥AG,
且EF=1,AG=AC=1,
所以四邊形AGEF為平行四邊形.
所以AF∥EG.
因?yàn)镋G?平面BDE,AF?平面BDE,
所以AF∥平面BDE.
(2)連接FG.
因?yàn)镋F∥CG,EF=CG=1,且CE=1,
所以四邊形CEFG為菱形.
所以CF⊥EG.
因?yàn)樗倪呅蜛BCD為正方形,所以BD⊥AC.
又因?yàn)槠矫鍭CEF⊥平面ABCD,
且平面ACEF∩平面ABCD=AC,
所以BD⊥平面ACEF.所以CF⊥BD.
又BD∩EG=G,所以CF⊥平面BDE.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在直三棱柱中,,,求:

(1)異面直線所成角的余弦值;
(2)直線到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,四棱錐PABCD的底面為正方形,側(cè)棱PA⊥底面ABCD,且PA=AD=2,E,F,H分別是線段PA,PD,AB的中點(diǎn).

(1)求證:PB∥平面EFH;
(2)求證:PD⊥平面AHF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在錐體PABCD中,ABCD是邊長(zhǎng)為1的菱形,且∠DAB=60°,PA=PD=,PB=2,E、F分別是BC、PC的中點(diǎn).證明:AD⊥平面DEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知是兩條不重合的直線,是三個(gè)不重合的平面,則的一個(gè)充分條件是(     )
A.
B.
C.
D.是異面直線,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè),b,c是空間三條不同的直線,,是空間兩個(gè)不同的平面,則下列命題不成立的是(    )
A.當(dāng)時(shí),若,則
B.當(dāng),且內(nèi)的射影時(shí),若b⊥c,則⊥b
C.當(dāng)時(shí),若b⊥,則
D.當(dāng)時(shí),若c∥,則b∥c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

命題:“若空間兩條直線a,b分別垂直平面α,則a∥b”,學(xué)生小夏這樣證明:
設(shè)a,b與平面α分別相交于A,B,連接AB,
∵a⊥α,b⊥α,AB?α,①
∴a⊥AB,b⊥AB,②
∴a∥b.③
這里的證明有兩個(gè)推理,即:
①⇒②和②⇒③,老師認(rèn)為小夏的推理證明不正確,這兩個(gè)推理中不正確的是    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直四棱柱ABCDA1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,且AB=2CD,在棱AB上是否存在一點(diǎn)F,使平面C1CF∥平面ADD1A1?若存在,求點(diǎn)F的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在長(zhǎng)方體ABCDA1B1C1D1的A1C1面上有一點(diǎn)P(如圖所示,其中P點(diǎn)不在對(duì)角線B1D1)上.
 
(1)過(guò)P點(diǎn)在空間作一直線l,使l∥直線BD,應(yīng)該如何作圖?并說(shuō)明理由;
(2)過(guò)P點(diǎn)在平面A1C1內(nèi)作一直線m,使m與直線BD成α角,其中α∈,這樣的直線有幾條,應(yīng)該如何作圖?

查看答案和解析>>

同步練習(xí)冊(cè)答案