已知三點(diǎn)A(1,3),B(-1,-1),C(2,1),直線l平行于BC,分別交AB、AC于點(diǎn)P、Q,若△APQ的面積是△ABC面積的數(shù)學(xué)公式,求直線l的方程.

解:過A點(diǎn)作BC邊的高AE,交PQ于點(diǎn)F,因?yàn)閘∥BC,所以,
,∴
由于直線BC的方程為2x-3y-1=0,所以|AE|=,所以|AF|=
所以|EF|=|AE|-|AF|=
設(shè)直線l的方程為y=x+b,即2x-3y+3b=0,
因?yàn)閮蓷l平行線間的距離為,∴,
解得b=或b=(舍去),
所以直線l的方程是y=x+,即6x-9y+13=0.
分析:先求出直線BC的方程,由三角形面積間的關(guān)系求出直線l與直線BC之間的距離,
由直線l平行于BC,設(shè)出直線l的方程,再利用兩平行線間的距離公式求出待定系數(shù),從而得到直線l的方程.
點(diǎn)評(píng):本題考查直線的點(diǎn)斜式方程,兩平行線間的距離公式,用到頂系數(shù)法求直線的方程的方法是一種常用的重要方法,
屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知三點(diǎn)A(1,3),B(-1,-1),C(2,1),直線l平行于BC,分別交AB、AC于點(diǎn)P、Q,若△APQ的面積是△ABC面積的
19
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三點(diǎn)A(1,-3),B(8,
12
),C(9,1),求證:A、B、C三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三點(diǎn)A(1,3)、B(5,7)、C(10,12).則下列說法中正確的是( 。
A、A、B、C三點(diǎn)共線B、△ABC是Rt△C、A、B、C三點(diǎn)不共線D、△ABC是等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知三點(diǎn)A(1,3),B(-1,-1),C(2,1),直線l平行于BC,分別交AB、AC于點(diǎn)P、Q,若△APQ的面積是△ABC面積的
1
9
,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案