(理)(1)證明:若數(shù)列{an}有遞推關(guān)系an+1=Aan+B,其中A、B為常數(shù),且A≠1,B≠0,則數(shù)列{an}是以A為公比的等比數(shù)列;

(2)若數(shù)列{an}對(duì)于任意的n∈N*都有Sn=2an-n,令f(x)=a1x+a2x2+…+anxn,求函數(shù)f(x)在x=1處的導(dǎo)數(shù).

(文)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知對(duì)于任意的n∈N*,都有Sn=2an-n.

(1)求數(shù)列{an}的首項(xiàng)a1及遞推關(guān)系式:an+1=f(an);

(2)先閱讀下面的定理:“若數(shù)列{an}有遞推關(guān)系an+1=Aan+B,其中A、B為常數(shù),且A≠1,B≠0,

則數(shù)列{an}是以A為公比的等比數(shù)列”.請(qǐng)你在(1)的基礎(chǔ)上應(yīng)用本定理,求數(shù)列{an}的通項(xiàng)公式;

(3)求數(shù)列{an}的前n項(xiàng)和Sn

答案:(理)(1)an+1=Aan+B=Aan=A(an)

A(an)

∴{an}是以A為公比的等比數(shù)列.

(2)∵Sn+1=2an+1-(n+1),Sn=2an-n

∴an+1=2an+1-2an-1

即an+1=2an+1

由(1)知{an+1}是公比為2的等比數(shù)列

∴an=2n-1

∵f′(x)=a1+2a2+3a3x2+…+nanxn-1

∴f′(1)=a1+2a2+3a3+…+nan

=(2+2×22+3×23+…+n×2n)-(1+2+3+…+n)

=2+(n-2)2n+1

(文)(1)∵a1=2a1-1,∴a1=1

∵Sn=2an-n                                                                   ①

∴Sn+1=2an+1-(n+1)                                                             ②

②-①得an+1=2an+1-2an-1

∴an+1=2an+1.

(2)∵an+1=2an+1

∴{an+1}是等比數(shù)列,公比為2,首項(xiàng)為an+1=2

∴an+1=2×2n-1,∴an=2n-1.

(3)Sn=(2-1)+(22-1)+(23-1)+…+(2n-1)

=(2+22+23+…+2n)-n=2n+1-2-n.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
(a≠0且a≠1).
(1)試就實(shí)數(shù)a的不同取值,寫出該函數(shù)的單調(diào)遞增區(qū)間;
(2)已知當(dāng)x>0時(shí),函數(shù)在(0,
6
)
上單調(diào)遞減,在(
6
,+∞)
上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)(理)記(2)中的函數(shù)的圖象為曲線C,試問是否存在經(jīng)過原點(diǎn)的直線l,使得l為曲線C的對(duì)稱軸?若存在,求出l的方程;若不存在,請(qǐng)說明理由.
(文) 記(2)中的函數(shù)的圖象為曲線C,試問曲線C是否為中心對(duì)稱圖形?若是,請(qǐng)求出對(duì)稱中心的坐標(biāo)并加以證明;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
(a≠0且a≠1).
(1)試就實(shí)數(shù)a的不同取值,寫出該函數(shù)的單調(diào)遞增區(qū)間;
(2)已知當(dāng)x>0時(shí),函數(shù)在(0,
6
)
上單調(diào)遞減,在(
6
,+∞)
上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)(理)記(2)中的函數(shù)的圖象為曲線C,試問是否存在經(jīng)過原點(diǎn)的直線l,使得l為曲線C的對(duì)稱軸?若存在,求出l的方程;若不存在,請(qǐng)說明理由.
(文) 記(2)中的函數(shù)的圖象為曲線C,試問曲線C是否為中心對(duì)稱圖形?若是,請(qǐng)求出對(duì)稱中心的坐標(biāo)并加以證明;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣東省執(zhí)信中學(xué)高二上學(xué)期期中考試數(shù)學(xué) 題型:解答題

(本小題滿分14分) 如圖,在長方體   
(1)證明:當(dāng)點(diǎn);
(2)(理)在棱上是否存在點(diǎn)?若存在,求出的長;若不存在,請(qǐng)說明理由.
(文)在棱使若存在,求出的長;若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年四川省成都七中高三數(shù)學(xué)專項(xiàng)訓(xùn)練:指數(shù)、對(duì)數(shù)函數(shù)(解析版) 題型:解答題

已知函數(shù)(a≠0且a≠1).
(1)試就實(shí)數(shù)a的不同取值,寫出該函數(shù)的單調(diào)遞增區(qū)間;
(2)已知當(dāng)x>0時(shí),函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)(理)記(2)中的函數(shù)的圖象為曲線C,試問是否存在經(jīng)過原點(diǎn)的直線l,使得l為曲線C的對(duì)稱軸?若存在,求出l的方程;若不存在,請(qǐng)說明理由.
(文) 記(2)中的函數(shù)的圖象為曲線C,試問曲線C是否為中心對(duì)稱圖形?若是,請(qǐng)求出對(duì)稱中心的坐標(biāo)并加以證明;若不是,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案