【題目】在一次英語(yǔ)考試中,考試的成績(jī)服從正態(tài)分布(100,36),那么考試成績(jī)?cè)趨^(qū)間(88,112]內(nèi)的概率是(
A.0.6826
B.0.3174
C.0.9544
D.0.9974

【答案】C
【解析】解:∵考生的成績(jī)服從正態(tài)分布(100,36), ∴正態(tài)曲線關(guān)于x=100對(duì)稱,且標(biāo)準(zhǔn)差為6,
根據(jù)3σ原則知P(88<x<112)=P(100﹣2×6<x<100+2×6)=0.9544,
故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校有5個(gè)班級(jí)的同學(xué)一起到某工廠參加社會(huì)實(shí)踐活動(dòng),該工廠5個(gè)不同的車間供學(xué)生選擇,每個(gè)班級(jí)任選一個(gè)車間進(jìn)行時(shí)間學(xué)習(xí),則恰有2個(gè)班級(jí)選擇甲車間,1個(gè)班級(jí)選擇乙車間的方案有種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,b∈R,i是虛數(shù)單位,若a﹣i與2+bi互為共軛復(fù)數(shù),且z=(a+bi)2 , 則z在復(fù)平面中所表示的點(diǎn)在第( )象限.
A.一
B.二
C.三
D.四

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)滿足:f(x﹣1)=2x2﹣x,則函數(shù)f(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lnx+ln(2﹣x),則(
A.y=f(x)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱
B.f(x)在(0,2)單調(diào)遞減
C.y=f(x)的圖象關(guān)于直線x=1對(duì)稱
D.f(x)在(0,2)單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某珠寶店丟了一件珍貴珠寶,以下四人中只有一人說(shuō)真話,只有一人偷了珠寶.甲:我沒(méi)有偷;乙:丙是小偷;丙:丁是小偷;。何覜](méi)有偷.根據(jù)以上條件,可以判斷偷珠寶的人是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中的真命題為 . ①?gòu)?fù)平面中滿足|z﹣2|﹣|z+2|=1的復(fù)數(shù)z的軌跡是雙曲線;
②當(dāng)a在實(shí)數(shù)集R中變化時(shí),復(fù)數(shù)z=a2+ai在復(fù)平面中的軌跡是一條拋物線;
③已知函數(shù)y=f(x),x∈R+和數(shù)列an=f(n),n∈N,則“數(shù)列an=f(n),n∈N遞增”是“函數(shù)y=f(x),x∈R+遞增”的必要非充分條件;
④在平面直角坐標(biāo)系xoy中,將方程g(x,y)=0對(duì)應(yīng)曲線按向量(1,2)平移,得到的新曲線的方程為g(x﹣1,y﹣2)=0;
⑤設(shè)平面直角坐標(biāo)系xoy中方程F(x,y)=0表橢圓示一個(gè),則總存在實(shí)常數(shù)p、q,使得方程F(px,qy)=0表示一個(gè)圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】集合{x,y,z}的子集個(gè)數(shù)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x+x3+x5 , x1 , x2 , x3∈R,x1+x2<0,x2+x3<0,x3+x1<0,則f(x1)+f(x2)+f(x3)的值(
A.一定小于0
B.一定大于0
C.等于0
D.正負(fù)都有可能

查看答案和解析>>

同步練習(xí)冊(cè)答案