科目:高中數(shù)學 來源: 題型:
A.若f′(x0)不存在,則曲線y=f(x)在點(x0,f(x0))處就沒有切線
B.若曲線y=f(x)在點(x0,f(x0))處有切線,則f′(x0)必存在
C.若f′(x0)不存在,則曲線y=f(x)在(x0,f(x0))處的切線斜率不存在
D.若曲線y=f(x)在點(x0,f(x0))處的切線斜率不存在,則曲線在該點處就沒有切線
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(重慶卷文19)設函數(shù)若曲線y=f(x)的斜率最小的切線與直線12x+y=6平行,求:
(Ⅰ)a的值;
(Ⅱ)函數(shù)f(x)的單調區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分14分)
已知函數(shù)f(x)=,g(x)=alnx,aR。
若曲線y=f(x)與曲線y=g(x)相交,且在交點處有相同的切線,求a的值及該切線的方程;
設函數(shù)h(x)=f(x)- g(x),當h(x)存在最小之時,求其最小值(a)的解析式;
對(2)中的(a),證明:當a(0,+)時, (a)1.
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆四川省成都外國語學校高二下學期期中考試數(shù)學試卷(解析版) 題型:選擇題
設,函數(shù)的導函數(shù)是,且是奇函數(shù),若曲線y = f(x)的某一切線斜率是,則切點的橫坐標是( )
A. ln2 B.–ln2 C. D.
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年河北省高三第三次模擬考試理數(shù)(A卷) 題型:解答題
(本小題滿分12分)
已知函數(shù)
(Ⅰ)若曲線y=f(x)在點P(1,f(1))處的切線與直線y=x+2垂直,求函數(shù)y=f(x)的單調區(qū)間;[來源:學&科&網(wǎng)Z&X&X&K]
(Ⅱ)若對于任意成立,試求a的取值范圍;
(Ⅲ)記g(x)=f(x)+x-b(b∈R).當a=1時,函數(shù)g(x)在區(qū)間上有兩個零點,求實數(shù)b的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com