若曲線y=f (x)在點(x0,f(x0))處的切線方程為2x+y-1=0,則


  1. A.
    f′(x0)>0
  2. B.
    f′(x0)<0
  3. C.
    f′(x0)=0
  4. D.
    f′(x0)不存在
B
試題分析:由切線x+2y+1=0的斜率:k=-2,即f′(x0)=-2<0.故選B.
考點:考點:本題主要考查導數(shù)的幾何意義。
點評:利用導數(shù)研究曲線上某點切線方程、直線的斜率、導數(shù)的幾何意義等,屬于基礎題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下面說法正確的是(    )

A.若f′(x0)不存在,則曲線y=f(x)在點(x0,f(x0))處就沒有切線

B.若曲線y=f(x)在點(x0,f(x0))處有切線,則f′(x0)必存在

C.若f′(x0)不存在,則曲線y=f(x)在(x0,f(x0))處的切線斜率不存在

D.若曲線y=f(x)在點(x0,f(x0))處的切線斜率不存在,則曲線在該點處就沒有切線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(重慶卷文19)設函數(shù)若曲線y=f(x)的斜率最小的切線與直線12x+y=6平行,求:

(Ⅰ)a的值;

(Ⅱ)函數(shù)f(x)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分14分)

已知函數(shù)f(x)=,g(x)=alnx,aR。

若曲線y=f(x)與曲線y=g(x)相交,且在交點處有相同的切線,求a的值及該切線的方程;

設函數(shù)h(x)=f(x)- g(x),當h(x)存在最小之時,求其最小值(a)的解析式;

對(2)中的(a),證明:當a(0,+)時, (a)1.

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆四川省成都外國語學校高二下學期期中考試數(shù)學試卷(解析版) 題型:選擇題

,函數(shù)的導函數(shù)是,且是奇函數(shù),若曲線y = f(x)的某一切線斜率是,則切點的橫坐標是(    )

A. ln2   B.–ln2          C.          D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年河北省高三第三次模擬考試理數(shù)(A卷) 題型:解答題

(本小題滿分12分)

已知函數(shù)

(Ⅰ)若曲線y=f(x)在點P(1,f(1))處的切線與直線y=x+2垂直,求函數(shù)y=f(x)的單調區(qū)間;[來源:學&科&網(wǎng)Z&X&X&K]

(Ⅱ)若對于任意成立,試求a的取值范圍;

(Ⅲ)記g(x)=f(x)+x-b(b∈R).當a=1時,函數(shù)g(x)在區(qū)間上有兩個零點,求實數(shù)b的取值范圍。

 

查看答案和解析>>

同步練習冊答案