10.已知x=lnπ,y=log${\;}_{\frac{1}{2}}$π,z=e-2,則( 。
A.x<y<zB.y<x<zC.y<z<xD.z<y<x

分析 直接利用指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的運(yùn)算性質(zhì)比較三個(gè)數(shù)與0或1的大小得答案.

解答 解:∵x=lnπ>1,y=log${\;}_{\frac{1}{2}}$π<0,0<z=e-2<e0=1,
∴y<z<x.
故選:C.

點(diǎn)評(píng) 本題考查對(duì)數(shù)值的大小比較,考查了指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的運(yùn)算性質(zhì),是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)$f(x)=cos\frac{x}{3}•(sin\frac{x}{3}+\sqrt{3}cos\frac{x}{3})$.
(1)將f(x)寫成Asin(ωx+φ)+B($A>0,ω>0,φ∈({-\frac{π}{2},\frac{π}{2}})$)的形式,并寫出其最小正周期,圖象的對(duì)稱軸方程,奇偶性(不要證明);
(2)如果△ABC的三邊a、b、c滿足b2=ac,且邊b所對(duì)的角為x,試求x的范圍及此時(shí)函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知平面向量$\overrightarrow a=(1,2)$,且$\overrightarrow a∥\overrightarrow b$,則$\overrightarrow b$可能是( 。
A.(2,1)B.(-2,-1)C.(4,-2)D.(-1,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={x|x2<2-x},B={x|-1<x<2},則A∪B=( 。
A.(-1,1)B.(-2,2)C.(-1,2)D.(-2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.定義在R上的偶函數(shù)f(x)滿足f(x)>0,且對(duì)任意x∈R,f(x+2)=$\frac{1}{f(x)}$恒成立,則f(2015)=( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)y=f(x)是定義域?yàn)镽的偶函數(shù),當(dāng)x≥0時(shí),f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},0≤x<2}\\{lo{g}_{16}x,x≥2}\end{array}\right.$,若關(guān)于x的方程[f(x)]2+a•f(x)-a-1=0(a∈R)有且只有7個(gè)不同實(shí)數(shù)根,則a的取值范圍是(-2,-$\frac{5}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知f(x)為R上的可導(dǎo)函數(shù),且對(duì)?x∈R,均有f(x)>f′(x),則有( 。
A.e2016f(-2016)<f(0),f(2016)<e2016f(0)B.e2016f(-2016)>f(0),f(2016)>e2016f(0)
C.e2016f(-2016)<f(0),f(2016)>e2016f(0)D.e2016f(-2016)>f(0),f(2016)<e2016f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{2}$,($\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow{a}$,則$\overrightarrow{a}$與$\overrightarrow$的夾角為( 。
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.用數(shù)學(xué)歸納法證明:
(1)2+4+6+…+2n=n2+n;
(2)12+22+32+…+n2=$\frac{n(n+1)(2n+1)}{6}$;
(3)13+23+33+…+n3=[$\frac{1}{2}$n(n+1)]2

查看答案和解析>>

同步練習(xí)冊(cè)答案