表面積為的球面上有三點A、B、C,∠ACB=60°,AB=,則球心到截面ABC的距離及B、C兩點間球面距離最大值分別為( 。
A.3, | B., | C., | D.3, |
C
解析考點:球面距離及相關計算.
專題:計算題.
分析:設出AD,然后通過球的直徑求出AD,解出∠AOB,可求A,B兩點的球面距離.
解答:解:根據(jù)題意畫出示意圖,如圖.
表面積為16π的球的半徑R=2,
設△ABC所在小圓的半徑為r,
在△ABC中,由正弦定理得:
2r="AB" :sin∠ACB = : sin60° =2,r=1
∴在直角三角形AOQ中,
OQ= ,
則球心到截面ABC的距離為:;
當點C在BQ的延長線上時,B、C兩點間球面距離最大,
在直角三角形BOQ中,BO=2,BQ=1,
∴∠BOQ=30°,
∴B、C兩點間球面距離最大值為:∠BOC×R=.
故選C.
點評:本題考查學生的空間想象能力,以及學生對球面上的點的距離求解,是中檔題.球面上兩點之間的最短連線的長度,就是經(jīng)過這兩點的大圓在這兩點間的一段劣弧的長度.(大圓就是經(jīng)過球心的平面截球面所得的圓) 我們把這個弧長叫做兩點的球面距離.
科目:高中數(shù)學 來源:2010-2011學年河南省衛(wèi)輝市高三2月月考數(shù)學理卷 題型:選擇題
表面積為的球面上有三點A、B、C,∠ACB=60°,AB=,則球心到截面ABC的距離及B、C兩點間球面距離最大值分別為( 。
A.3, B., C., D.3,
查看答案和解析>>
科目:高中數(shù)學 來源:江西師大附中2010屆高三第三次模擬考試數(shù)學(理) 題型:選擇題
表面積為的球面上有三點A、B、C,∠ACB=60°,AB=,則球心到截面ABC的距離及B、C兩點間球面距離最大值分別為 ( )
A.3, B., C., D.3,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
表面積為的球面上有三點A、B、C,∠ACB=60°,AB=,則球心到截面ABC的距離及B、C兩點間球面距離最大值分別為 ( 。
A.3, B., C., D.3,
查看答案和解析>>
科目:高中數(shù)學 來源:江西省師大附中2010屆高三三模試卷(理) 題型:選擇題
表面積為的球面上有三點A、B、C,∠ACB=60°,AB=,則球心到截面ABC的距離及B、C兩點間球面距離最大值分別為( 。
A.3, B., C., D.3,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com