將2.1 
1
2
,2.2 
1
2
,0.3 
1
3
這三個(gè)數(shù)從小到大排列為
0.3 
1
3
<2.1 
1
2
<2.2 
1
2
0.3 
1
3
<2.1 
1
2
<2.2 
1
2
分析:由于f(x)=x 
1
2
在[0,+∞)上是遞增函數(shù),2.1<2.2,所以1<2.1 
1
2
<2.2 
1
2
,又由0.3 
1
3
<1
,故可得結(jié)論.
解答:解:∵函數(shù)f(x)=x 
1
2
在[0,+∞)上是遞增函數(shù),
∴1<f(2.1)<f(2.2),
又由0.3 
1
3
<1
,則0.3 
1
3
<1<2.1 
1
2
<2.2 
1
2

故答案為 0.3 
1
3
<2.1 
1
2
<2.2 
1
2
點(diǎn)評(píng):本題考查冪函數(shù)的性質(zhì)和應(yīng)用,解題時(shí)要注意f(x)=x 
1
2
在[0,+∞)上是遞增函數(shù),合理地運(yùn)用函數(shù)的單調(diào)性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

13、觀察以下等式:1=12,2+3+4=32,3+4+5+6+7=52,…,將上述等式推廣到一般情形:對(duì)n∈N*,有等式:
n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中:
①集合A={ x|0≤x<3且x∈N }的真子集的個(gè)數(shù)是8;
②關(guān)于x的一元二次方程x2+mx+2m+1=0一個(gè)根大于1,一個(gè)根小于1,則實(shí)數(shù)m的取值范圍m<-
2
3

③函數(shù)f(x)=x2+(3a+1)x+2a在 (-∞,4)上為減函數(shù),則實(shí)數(shù)a的取值范圍是a≤3;
④已知函數(shù)y=4x-4•2x+1(-1≤x≤2),則函數(shù)的值域?yàn)閇-
3
4
,1];
⑤定義在(-1,0)的函數(shù)f(x)=log(2a)(x+1)滿(mǎn)足f(x)>0的a的取值范圍是(0,
1
2
);
⑥將三個(gè)數(shù):x=20.2,y=(
1
2
)2
,z=log2
1
2
,
按從大到小排列正確的是z>x>y,其中正確的有
②⑤
②⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

將2.1 
1
2
,2.2 
1
2
,0.3 
1
3
這三個(gè)數(shù)從小到大排列為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省高考模擬預(yù)測(cè)數(shù)學(xué)文試卷(解析版) 題型:解答題

一個(gè)袋中裝有四個(gè)形狀大小完全相同的球,球的編號(hào)分別為1,2,3,4.

(I)從袋中隨機(jī)抽取一個(gè)球,將其編號(hào)記為,然后從袋中余下的三個(gè)球中再隨機(jī)抽取一個(gè)球,將其編號(hào)記為.求關(guān)于的一元二次方程有實(shí)根的概率;

(II)先從袋中隨機(jī)取一個(gè)球,該球的編號(hào)為m,將球放回袋中,然后再?gòu)拇须S機(jī)取一個(gè)球,該球的編號(hào)為n.若以 作為點(diǎn)P的坐標(biāo),求點(diǎn)P落在區(qū)域內(nèi)的概率.

【解析】第一問(wèn)利用古典概型概率求解所有的基本事件數(shù)共12種,然后利用方程有實(shí)根,則滿(mǎn)足△=4a2-4b2≥0,即a2≥b2。,這樣求得事件發(fā)生的基本事件數(shù)為6種,從而得到概率。第二問(wèn)中,利用所有的基本事件數(shù)為16種。即基本事件(m,n)有:(1,1)  (1,2)   (1,3)  (1,4)   (2,1)  (2,2)  (2,3)   (2,4)   (3,1)   (3,2)  (3,3)    (3,4)   (4,1)   (4,2)   (4,3)  (4,4)共16種。在求解滿(mǎn)足的基本事件數(shù)為(1,1) (2,1)  (2,2) (3,1) 共4種,結(jié)合古典概型求解得到概率。

(1)基本事件(a,b)有:(1,2)   (1,3)  (1,4)   (2,1)   (2,3)   (2,4)   (3,1)   (3,2)  (3,4)   (4,1)   (4,2)   (4,3)共12種。

有實(shí)根, ∴△=4a2-4b2≥0,即a2≥b2。

記“有實(shí)根”為事件A,則A包含的事件有:(2,1)   (3,1)   (3,2)  (4,1)   (4,2)   (4,3) 共6種。

∴PA.= 。   …………………6分

(2)基本事件(m,n)有:(1,1)  (1,2)   (1,3)  (1,4)   (2,1)  (2,2)  (2,3)   (2,4)   (3,1)   (3,2)  (3,3)    (3,4)   (4,1)   (4,2)   (4,3)  (4,4)共16種。

記“點(diǎn)P落在區(qū)域內(nèi)”為事件B,則B包含的事件有:

(1,1) (2,1)  (2,2) (3,1) 共4種!郟B.=

 

查看答案和解析>>

同步練習(xí)冊(cè)答案