函數(shù)f(x)=
9x-a
3x
的圖象關(guān)于原點(diǎn)對(duì)稱,g(x)=lg(10x+1)+bx是偶函數(shù),則a+b=( �。�
A、1
B、-1
C、-
1
2
D、
1
2
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可得f(-x)=-f(x)對(duì)任意的x都成立,代入整理可求a;由題意可得g(-x)=g(x)對(duì)任意的x都成立,代入整理可求b
解答: 解:∵f(x)=
9x-a
3x
關(guān)于原點(diǎn)對(duì)稱,∴函數(shù)f(x)是奇函數(shù),∴f(0)=0,∴a=1
∵g(x)=lg(10x+1)+bx是偶函數(shù),∴g(-x)=g(x)對(duì)任意的x都成立,
∴l(xiāng)g(10-x+1)-bx=lg(10x+1)+bx,∴l(xiāng)g(
10x+1
10x
)=lg(10x+1)+2bx
∴-x=2bx對(duì)一切x恒成立,∴b=-
1
2
,∴a+b=
1
2

故選:D
點(diǎn)評(píng):本題主要考查了奇偶函數(shù)的定義的應(yīng)用,解題中要善于利用奇函數(shù)的性質(zhì)f(0)=0(0在該函數(shù)的定義域內(nèi))可以簡(jiǎn)化基本運(yùn)算,屬于基礎(chǔ)題,但是容易出現(xiàn)錯(cuò)誤.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱柱ABC-A′B′C′中,底面ABC是正三角形,AA′⊥底面ABC,且AB=1,AA′=2,則直線BC′與平面ABB′A′所成角的正弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在圖1等邊三角形ABC中,AB=2,E是線段AB上的點(diǎn)(除點(diǎn)A外),過(guò)點(diǎn)E作EF⊥AC于點(diǎn)F,將△AEF 沿EF折起到△PEF(點(diǎn)A與點(diǎn)P重合,如圖2),使得∠PFC=
π
3

(1)求證:EF⊥PC;
(2)試問(wèn),當(dāng)點(diǎn)E在線段AB上移動(dòng)時(shí),二面角P-EB-C的大小是否為定值?若是,求出這個(gè)二面角的平面角的正切值,若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)y=f(x)滿足以下三個(gè)條件:
①對(duì)于任意的x∈R,都有  f(x+1)=
1
f(x)
;
②函數(shù)y=f(x+1)的圖象關(guān)于y軸對(duì)稱;
③對(duì)于任意的x1,x2∈[0,1],且x1<x2,都有f(x1)>f(x2).
則f(
3
2
),f(2),f(3)從小到大排列是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知遞增的等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2,a4的等差中項(xiàng),等差數(shù)列{bn}的前n項(xiàng)和為{Sn},s4=20,b4=a3
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)若Tn=
1
2
a1b1+
1
2
a2b2+…+
1
2
anbn
,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x2
x+1
,則f′(1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

冪函數(shù)y=f(x)的圖象經(jīng)過(guò)點(diǎn)(2,8),若f(a)=27則a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正六邊形ABCDEF的兩個(gè)頂點(diǎn)A,D為橢圓的兩個(gè)焦點(diǎn),其余四個(gè)頂點(diǎn)在橢圓上,則該橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

20世紀(jì)30年代,里克特制訂了一種表明地震能量大小的尺度,已知里氏震級(jí)R與地震釋放的能量E的關(guān)系為R=
2
3
(lgE-11.4).那么里氏9級(jí)的地震釋放的能量是里氏7級(jí)地震釋放的能量的
 
倍.

查看答案和解析>>

同步練習(xí)冊(cè)答案