(本題滿分15分)已知函數(shù).
(1)求函數(shù)的圖像在點處的切線方程;
(2)若,且對任意恒成立,求的最大值;
(1); (2)整數(shù)的最大值是3.
解析試題分析:(1)解:因為,所以,
函數(shù)的圖像在點處的切線方程;…………5分
(2)解:由(1)知,,所以對任意恒成立,即對任意恒成立.…………7分
令,則,……………………8分
令,則,
所以函數(shù)在上單調(diào)遞增.………………………9分
因為,所以方程在上存在唯一實根,且滿足.
當,即,當,即,…13分
所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增.
所以.…………14分
所以.故整數(shù)的最大值是3.………………………15分
考點:本題主要考查導數(shù)的幾何意義,應用導數(shù)研究函數(shù)的單調(diào)性及極值。
點評:典型題,本題屬于導數(shù)應用中的基本問題,像涉及恒成立問題,往往通過研究函數(shù)的最值達到解題目的。涉及對數(shù)函數(shù),要特別注意函數(shù)的定義域。
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù).
(I)若曲線與曲線在它們的交點處具有公共切線,求的值;
(II)當時,若函數(shù)在區(qū)間內(nèi)恰有兩個零點,求的取值范圍;
(III)當時,求函數(shù)在區(qū)間上的最大值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知在區(qū)間上是增函數(shù),在區(qū)間和上是減函數(shù),且
(1)求函數(shù)的解析式.
(2)若在區(qū)間上恒有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題14分)已知函數(shù)在處取得極值,且在處的切線的斜率為1。
(Ⅰ)求的值及的單調(diào)減區(qū)間;
(Ⅱ)設>0,>0,,求證:。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)已知函數(shù).()
(1)若函數(shù)有三個零點,且,,求函數(shù) 的單調(diào)區(qū)間;
(2)若,,試問:導函數(shù)在區(qū)間(0,2)內(nèi)是否有零點,并說明理由.
(3)在(Ⅱ)的條件下,若導函數(shù)的兩個零點之間的距離不小于,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分15分)
已知函數(shù),是的導函數(shù)(為自然對數(shù)的底數(shù))
(Ⅰ)解關(guān)于的不等式:;
(Ⅱ)若有兩個極值點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù).
(Ⅰ)若函數(shù)在,處取得極值,求,的值;
(Ⅱ)若,函數(shù)在上是單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(滿分12分)已知函數(shù).(Ⅰ) 求在上的最小值;(Ⅱ) 若存在(是常數(shù),=2.71828)使不等式成立,求實數(shù)的取值范圍;
(Ⅲ) 證明對一切都有成立.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com