如圖,橢圓的右焦點(diǎn)F2與拋物線y2=4x的焦點(diǎn)重合,過(guò)F2作與x軸垂直的直線l與橢圓交于S,T,而與拋物線交于C,D兩點(diǎn),且
(1)求橢圓E的方程;
(2)若過(guò)m(2,0)的直線與橢圓E相交于兩點(diǎn)A和B,設(shè)P為橢圓E上一點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)t的取值范圍.

【答案】分析:(1)由焦點(diǎn)F2(1,0),過(guò)F2作與x軸垂直的直線l與橢圓交于S,T,而與拋物線交于C,D兩點(diǎn),且,知|CD|=4,|ST|=,由此能求出橢圓方程.
(2)設(shè)過(guò)m(2,0)的直線為y=k(x-2),由,得(1+2k2)x2-8k2x+8k2-2=0,設(shè)A(x1,y1),B(x2,y2),P(x,y),,由此結(jié)合題設(shè)條件能求出實(shí)數(shù)t的取值范圍.
解答:解:(1)∵橢圓的右焦點(diǎn)F2與拋物線y2=4x的焦點(diǎn)重合,
∴焦點(diǎn)F2(1,0),
∵過(guò)F2作與x軸垂直的直線l與橢圓交于S,T,而與拋物線交于C,D兩點(diǎn),且
∴|CD|=4,解得|ST|=,
∴a=,b=1,c=1,
∴橢圓E的方程是
(2)設(shè)過(guò)m(2,0)的直線為y=k(x-2),
,得(1+2k2)x2-8k2x+8k2-2=0,
設(shè)A(x1,y1),B(x2,y2),P(x,y),,
,
2=+2=,
,
∵△=(8k22-4(1+2k2)(8k2-2)>0,
∴0≤2k2<1,
=1-,
∴t∈(-2,2).
點(diǎn)評(píng):本題考查橢圓方程的求法,考查滿足條件的實(shí)數(shù)的取值范圍的求法,解題時(shí)要認(rèn)真審題,注意等價(jià)轉(zhuǎn)化思想的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,橢圓的中心在坐標(biāo)原點(diǎn),長(zhǎng)軸端點(diǎn)為A、B,右焦點(diǎn)為F,且
AF
FB
=1
,|
OF
|=1

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)橢圓的右焦點(diǎn)F作直線l1,l2,直線l1與橢圓分別交于點(diǎn)M、N,直線l2與橢圓分別交于點(diǎn)P、Q,且|
MP
|2+|
NQ
|2=|
NP
|2+|
MQ
|2
,求四邊形MPNQ的面積S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•海淀區(qū)一模)如圖,橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的右準(zhǔn)線l與x軸的交點(diǎn)為A,橢圓的上頂點(diǎn)為B,過(guò)橢圓的右焦點(diǎn)F作垂直于橢圓長(zhǎng)軸的直線交橢圓于P點(diǎn),若點(diǎn)D滿足
FD
=
DP
AB
AD
(λ≠0),
(Ⅰ)求橢圓的離心率;
(Ⅱ)若橢圓的長(zhǎng)軸長(zhǎng)等于4,Q是橢圓右準(zhǔn)線l上異于點(diǎn)A的任意一點(diǎn),A1,A2分別是橢圓的左、右頂點(diǎn),直線QA1、QA2與橢圓的另一個(gè)交點(diǎn)分別為M、N,求證:直線MN與x軸交于定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(14分) 如圖,橢圓 的右準(zhǔn)線lx軸于點(diǎn)M,AB為過(guò)焦點(diǎn)F的弦,且直線AB的傾斜角.

(Ⅰ)當(dāng)的面積最大時(shí),求直線AB的方程.

(Ⅱ)()試用表示;

()若,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2006年江西省高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,橢圓的右焦點(diǎn)為F(c,0),過(guò)點(diǎn)F的一動(dòng)直線m繞點(diǎn)F轉(zhuǎn)動(dòng),
并且交橢圓于A,B兩點(diǎn),P為線段AB的中點(diǎn).
(1)求點(diǎn)P的軌跡H的方程;
(2)若在Q的方程中,令a2=1+cosθ+sinθ,
設(shè)軌跡H的最高點(diǎn)和最低點(diǎn)分別為M和N.當(dāng)θ為何值時(shí),△MNF為一個(gè)正三角形?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,橢圓數(shù)學(xué)公式的右焦點(diǎn)為F,過(guò)焦點(diǎn)F作兩條互相垂直的弦AB、CD,設(shè)弦AB、CD的中點(diǎn)分別為M、N.
(Ⅰ)求證:直線MN恒過(guò)定點(diǎn)T,并求出T的坐標(biāo);
(Ⅱ)求以AB、CD為直徑的兩圓公共弦中點(diǎn)的軌跡方程,并判斷定點(diǎn)T與軌跡的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案