(本題8分)如圖,已知點A(2,3), B(4,1),△ABC是以AB為底邊的等腰三角形,點C在直線l:x-2y+2=0上.
(Ⅰ)求AB邊上的高CE所在直線的方程;
(Ⅱ)求△ABC的面積.
(Ⅰ)x-y-1=0.(Ⅱ).
【解析】(I)先由AB的斜率求出CE的斜率,因為AC=BC,所以E為AB的中點,進而寫出點斜式方程,再化成一般式方程.
(II)由直線l的方程和CE的方程聯立解方程組可解出點C的坐標,然后利用兩點間的距離公式可求出CE和AB的長度,再利用面積公式求值即可.
解:(Ⅰ)由題意可知,E為AB的中點,∴E(3,2),……………………1分
且,……………………………………………………1分,
∴CE:y-2=x-3,即x-y-1=0.………………………………2分
(Ⅱ)由得C(4,3),…………………………………1分
∴|AC|=|BC|=2,AC⊥BC,…………………………………………1分
∴.………………………………………2分
科目:高中數學 來源:2011-2012學年上海市長寧區(qū)高三4月教學質量檢測(二模)理科數學試卷(解析版) 題型:解答題
(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2小題滿分8分。
如圖,已知四棱錐P—ABCD,底面ABCD為矩形,,PA平面ABCD, E,F分別是BC,PC的中點。
(1)求異面直線PB與AC所成的角的余弦值;
(2)求三棱錐的體積。
查看答案和解析>>
科目:高中數學 來源:2011-2012學年上海市崇明縣高三第一學期期末考試數學 題型:解答題
(本題18分,第(1)小題4分;第(2)小題6分;第(3)小題8分)
如圖,已知橢圓:過點,上、下焦點分別為、,
向量.直線與橢圓交于兩點,線段中點為.
(1)求橢圓的方程;
(2)求直線的方程;
(3)記橢圓在直線下方的部分與線段所圍成的平面區(qū)域(含邊界)為,若曲線
與區(qū)域有公共點,試求的最小值.
查看答案和解析>>
科目:高中數學 來源:2013屆內蒙古呼倫貝爾市高二上學期第一次綜合考試理科數學 題型:解答題
(本題滿分8分)如圖,已知△ABC在平面α外,它的三邊所在直線分別交平面α于點P、Q、R,求證:P、Q、R三點共線.
查看答案和解析>>
科目:高中數學 來源: 題型:
(本題18分,第(1)小題4分;第(2)小題6分;第(3)小題8分)
如圖,已知橢圓E:,焦點為、,雙曲線G:的頂點是該橢圓的焦點,設是雙曲線G上異于頂點的任一點,直線、與橢圓的交點分別為A、B和C、D,已知三角形的周長等于,橢圓四個頂點組成的菱形的面積為.
(1)求橢圓E與雙曲線G的方程;
(2)設直線、的斜率分別為和,探求和的關系;
(3)是否存在常數,使得恒成立?若存在,試求出的值;若不存在,
請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com