【題目】設(shè),,是橢圓的左,右焦點(diǎn),直線與橢圓相交于,兩點(diǎn)
(1)若線段的中點(diǎn)為,求直線的方程;
(2)若直線過橢圓的左焦點(diǎn),,求的面積.
【答案】(1);(2)
【解析】
(1)點(diǎn)A、B的坐標(biāo)代入橢圓方程,兩式相減得到等式①,利用中點(diǎn)坐標(biāo)可得代入①式可化簡求出直線的斜率k,即可求出直線的點(diǎn)斜式方程,化簡即可;
(2)設(shè)直線l的方程為,與橢圓方程聯(lián)立得關(guān)于y的一元二次方程,韋達(dá)定理求出、,由得,列出等式化簡得,求出點(diǎn)到直線AB的距離及,代入即可求得的面積.
(1)由橢圓的對稱性知直線的斜率存在,設(shè),
因?yàn)?/span>A、B在橢圓上,所以,,
兩式相減可得①,
因?yàn)?/span>為線段AB的中點(diǎn),所以,
代入①式可得,即,
因?yàn)辄c(diǎn)在直線,直線l的方程為,
即;
(2)橢圓的右焦點(diǎn),設(shè)直線l的方程為,
聯(lián)立,,
所以,
因?yàn)?/span>,所以,即,
,所以,,
點(diǎn)到直線AB的距離為,
,
所以的面積為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓與的離心率相等.橢圓的右焦點(diǎn)為F,過點(diǎn)F的直線與橢圓交于A,B兩點(diǎn),射線與橢圓交于點(diǎn)C,橢圓的右頂點(diǎn)為D.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若的面積為,求直線的方程;
(3)若,求證:四邊形是平行四邊形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“新冠肺炎”疫情的控制需要根據(jù)大數(shù)據(jù)進(jìn)行分析,并有針對性的采取措施.下圖是甲、乙兩個省份從2月7日到2月13日一周內(nèi)的新增“新冠肺炎”確診人數(shù)的折線圖.根據(jù)圖中甲、乙兩省的數(shù)字特征進(jìn)行比對,下列說法錯誤的是( )
A.2月7日到2月13日甲省的平均新增“新冠肺炎”確診人數(shù)低于乙省
B.2月7日到2月13日甲省的單日新增“新冠肺炎”確診人數(shù)最大值小于乙省
C.2月7日到2月13日乙省相對甲省的新增“新冠甲省肺炎”確診人數(shù)的波動大
D.后四日(2月10日至13日)乙省每日新增“新冠肺炎”確診人數(shù)均比甲省多
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線,過點(diǎn)的直線交拋物線于,,,兩點(diǎn).當(dāng)垂直于軸時,的面積為.
0
(1)求拋物線的方程:
(2)設(shè)線段的垂直平分線交軸于點(diǎn).
①證明:為定值:
②若,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的邊長為4,點(diǎn), 分別為, 的中點(diǎn),將, ,分別沿, 折起,使, 兩點(diǎn)重合于點(diǎn),連接.
(1)求證: 平面;
(2)求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方體中,,,,是棱上的一條線段,且,是的中點(diǎn),是棱上的動點(diǎn),則
①四面體的體積為定值
②直線到平面的距離為定值
③點(diǎn)到直線的距離為定值
④直線與平面所成的角為定值
其中正確結(jié)論的編號是( )
A.①②③B.①②④C.①③④D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的上頂點(diǎn)為,左,右焦點(diǎn)分別為,,的面積為,直線的斜率為.為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)設(shè)過點(diǎn)的直線與橢圓交于點(diǎn)(不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn).,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的普通方程為,以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(I)求的參數(shù)方程與的直角坐標(biāo)方程;
(II)射線與交于異于極點(diǎn)的點(diǎn),與的交點(diǎn)為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且.
(1)若為等差數(shù)列,且
①求該等差數(shù)列的公差;
②設(shè)數(shù)列滿足,則當(dāng)為何值時,最大?請說明理由;
(2)若還同時滿足:
①為等比數(shù)列;
②;
③對任意的正整數(shù)存在自然數(shù),使得、、依次成等差數(shù)列,試求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com