設(shè)等軸雙曲線(a>0)的兩個頂點(diǎn)為A,B,P是雙曲線上異于頂點(diǎn)的一點(diǎn),自P向x軸作垂線其垂足為Q,求證:∠PAQ+∠PBQ=

答案:
解析:

證 不妨設(shè)P點(diǎn)在雙曲線的右支的上半支上,如圖所示,設(shè)P(,y),又設(shè)∠PAQ=α,∠PBQ=β,則,tanβ=,由于1-tanαtanβ=1-


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•臨沂一模)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率與等軸雙曲線的離心率互為倒數(shù)關(guān)系,直線l:x-y+
2
=0
與以原點(diǎn)為圓心,以橢圓C的短半軸長為半徑的圓相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)M是橢圓的上頂點(diǎn),過點(diǎn)M分別作直線MA,MB交橢圓于A,B兩點(diǎn),設(shè)兩直線的斜率分別為k1,k2,且k1+k2=4,證明:直線AB過定點(diǎn)(-
1
2
,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•長寧區(qū)一模)設(shè)直線l的方程為y=kx-1,等軸雙曲線C:x2-y2=a2(a>0)的中心在原點(diǎn),右焦點(diǎn)坐標(biāo)為( 
2
,0).
(1)求雙曲線方程;
(2)設(shè)直線l與雙曲線C的右支交于不同的兩點(diǎn)A,B,記AB中點(diǎn)為M,求k的取值范圍,并用k表示M點(diǎn)的坐標(biāo).
(3)設(shè)點(diǎn)Q(-1,0),求直線QM在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的離心率為e,右準(zhǔn)線l與兩條漸近線交于P,Q兩點(diǎn),右焦點(diǎn)為F,且△PQF為等邊三角形.
(1)求雙曲線C的離心率e的值;
(2)若雙曲線C被直線y=ax+b截得的弦長為
b2e2
a
,求雙曲線C的方程;
(3)設(shè)雙曲線C經(jīng)過點(diǎn)(1,0),以F為左焦點(diǎn),L為左準(zhǔn)線的橢圓,其短軸的端點(diǎn)為B,求BF中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年上海市長寧區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

設(shè)直線l的方程為y=kx-1,等軸雙曲線C:x2-y2=a2(a>0)的中心在原點(diǎn),右焦點(diǎn)坐標(biāo)為( ,0).
(1)求雙曲線方程;
(2)設(shè)直線l與雙曲線C的右支交于不同的兩點(diǎn)A,B,記AB中點(diǎn)為M,求k的取值范圍,并用k表示M點(diǎn)的坐標(biāo).
(3)設(shè)點(diǎn)Q(-1,0),求直線QM在y軸上截距的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案