(1)選修4-2:矩陣與變換
已知向量
1
-1
在矩陣M=
1m
01
變換下得到的向量是
0
-1

(Ⅰ)求m的值;
(Ⅱ)求曲線y2-x+y=0在矩陣M-1對應(yīng)的線性變換作用下得到的曲線方程.
(2)選修4-4:極坐標(biāo)與參數(shù)方程
在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)M的極坐標(biāo)為(4
2
π
4
)
,曲線C的參數(shù)方程為
x=1+
2
cosα
y=
2
sinα
(α為參數(shù)).
(Ⅰ)求直線OM的直角坐標(biāo)方程;
(Ⅱ)求點(diǎn)M到曲線C上的點(diǎn)的距離的最小值.
(3)選修4-5:不等式選講
設(shè)實(shí)數(shù)a,b滿足2a+b=9.
(Ⅰ)若|9-b|+|a|<3,求a的取值范圍;
(Ⅱ)若a,b>0,且z=a2b,求z的最大值.
(1)(Ⅰ)因?yàn)?
1m
01
1
-1
=
1-m
-1
,
所以,
1-m
-1
=
0
-1
,即m=1.…(3分)
(Ⅱ)因?yàn)?span dealflag="1" mathtag="math" >M=
11
01
,所以M-1=
1-1
01
.…(4分)
設(shè)曲線y2-x+y=0上任意一點(diǎn)(x,y)在矩陣M-1所對應(yīng)的線性變換作用下的像是(x',y').
x′
y′
=
1-1
01
x
y
=
x-y
y
,…(5分)
所以
x-y=x′
y=y′
x=x′+y′
y=y′
代入曲線y2-x+y=0得y'2=x'.…(6分)
由(x,y)的任意性可知,曲線y2-x+y=0在矩陣M-1對應(yīng)的線性變換作用下的曲線方程為y2=x.…(7分)
(2)(Ⅰ)由點(diǎn)M的極坐標(biāo)為(4
2
π
4
)
得點(diǎn)M的直角坐標(biāo)為(4,4),
所以直線OM的直角坐標(biāo)方程為y=x.…(3分)
(Ⅱ)由曲線C的參數(shù)方程
x=1+
2
cosα
y=
2
sinα
(α為參數(shù))
化為普通方程為(x-1)2+y2=2,…(5分)
圓心為A(1,0),半徑為r=
2

由于點(diǎn)M在曲線C外,故點(diǎn)M到曲線C上的點(diǎn)的距離最小值為MA-r=5-
2
.…(7分)
(3)(Ⅰ)由2a+b=9得9-b=2a,即|6-b|=2|a|.
所以|9-b|+|a|<3可化為3|a|<3,即|a|<1,解得-1<a<1.
所以a的取值范圍-1<a<1.…(4分)
(Ⅱ)因?yàn)閍,b>0,所以z=a2b=a•a•b≤(
a+a+b
3
)3=(
2a+b
3
)3=33
=27,…(6分)
當(dāng)且僅當(dāng)a=b=3時,等號成立.
故z的最大值為27.…(7分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:江蘇省丹陽市08-09學(xué)年高二下學(xué)期期末測試(理) 題型:解答題

 (本題是選做題,滿分28分,請?jiān)谙旅嫠膫題目中選兩個作答,每小題14分,多做按前兩題給分)

A.(選修4-1:幾何證明選講)

如圖,△ABC是⊙O的內(nèi)接三角形,PA是⊙O的切線,PBAC于點(diǎn)E,交⊙O于點(diǎn)D,若PEPA,PD=1,BD=8,求線段BC的長.

 

 

 

 

 

 

B.(選修4-2:矩陣與變換)

在直角坐標(biāo)系中,已知橢圓,矩陣陣,,求在矩陣作用下變換所得到的圖形的面積.

C.(選修4-4:坐標(biāo)系與參數(shù)方程)

直線(為參數(shù),為常數(shù)且)被以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,方程為的曲線所截,求截得的弦長.

D.(選修4-5:不等式選講)

設(shè),求證:.

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案