精英家教網 > 高中數學 > 題目詳情
已知函數f(x)的定義域為(-2,2),導函數為f′(x)=2+cosx,且f(0)=0,則滿足f(1+x)+f(x-x2)>0的實數x的取值范圍為( )
A.(-1,1)
B.(-1,1+
C.(1-,1)
D.(1-,1+
【答案】分析:由導函數可求原函數f(x),判斷函數f(x)單調性和奇偶性,利用奇偶性將不等式f(1+x)+f(x-x2)>0轉化成f(1+x)>f(x2-x),利用單調性去掉函數符號f 即可解得所求,注意自變量本身范圍.
解答:解:∵f'(x)=2+cosx,知f(x)=2x+sinx+c,而f(0)=0,∴c=0.
即f(x)=2x+sinx,易知此函數是奇函數,且在整個區(qū)間單調遞增,
因為f'(x)=2+cosx在x∈(0,2)恒大于0,
根據奇函數的性質可得出,在其對應區(qū)間上亦是單調遞增的.
由 f(1+x)+f(x-x2)>0 可得 f(1+x)>-f(x-x2),即:f(1+x)>f(x2-x).
,解得解得:x∈(1-,1),
故選C.
點評:本題主要考查了函數的單調性與導數的關系,以及函數的單調性和奇偶性,同時考查了計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=log3
3
x
1-x
,M(x1,y1),N(x2y2)
是f(x)圖象上的兩點,橫坐標為
1
2
的點P滿足2
OP
=
OM
+
ON
(O為坐標原點).
(Ⅰ)求證:y1+y2為定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn;
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn為數列{an}的前n項和,若Tn<m(Sn+1+1)對一切n∈N*都成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

下列說法正確的有( 。﹤.
①已知函數f(x)在(a,b)內可導,若f(x)在(a,b)內單調遞增,則對任意的?x∈(a,b),有f′(x)>0.
②函數f(x)圖象在點P處的切線存在,則函數f(x)在點P處的導數存在;反之若函數f(x)在點P處的導數存在,則函數f(x)圖象在點P處的切線存在.
③因為3>2,所以3+i>2+i,其中i為虛數單位.
④定積分定義可以分為:分割、近似代替、求和、取極限四步,對求和In=
n
i=1
f(ξi)△x
中ξi的選取是任意的,且In僅于n有關.
⑤已知2i-3是方程2x2+px+q=0的一個根,則實數p,q的值分別是12,26.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直線y=m與兩個相鄰函數的交點為A,B,若m變化時,AB的長度是一個定值,則AB的值是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(Ⅰ)已知函數f(x)=x3-x,其圖象記為曲線C.
(i)求函數f(x)的單調區(qū)間;
(ii)證明:若對于任意非零實數x1,曲線C與其在點P1(x1,f(x1))處的切線交于另一點P2(x2,f(x2)),曲線C與其在點P2(x2,f(x2))處的切線交于另一點P3(x3,f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積記為S1,S2.則
S1S2
為定值;
(Ⅱ)對于一般的三次函數g(x)=ax3+bx2+cx+d(a≠0),請給出類似于(Ⅰ)(ii)的正確命題,并予以證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x3-ax+b存在極值點.
(1)求a的取值范圍;
(2)過曲線y=f(x)外的點P(1,0)作曲線y=f(x)的切線,所作切線恰有兩條,切點分別為A、B.
(。┳C明:a=b;
(ⅱ)請問△PAB的面積是否為定值?若是,求此定值;若不是求出面積的取值范圍.

查看答案和解析>>

同步練習冊答案