已知兩個正四棱錐P-ABCD與Q-ABCD的高分別為1和2,AB=4.

(Ⅰ)證明PQ⊥平面ABCD;
(Ⅱ)求異面直線AQ與PB所成的角;
(Ⅲ)求點P到平面QAD的距離.
(Ⅰ)由P-ABCD與Q-ABCD都是正四棱錐,得到PO⊥平面ABCD,QO⊥平面ABCD.
從而P、O、Q三點在一條直線上,所以PQ⊥平面ABCD.
(Ⅱ).(Ⅲ) .

試題分析:(Ⅰ)連結(jié)AC、BD,設(shè).
由P-ABCD與Q-ABCD都是正四棱錐,所以PO⊥平面ABCD,QO⊥平面ABCD.
從而P、O、Q三點在一條直線上,所以PQ⊥平面ABCD.
(Ⅱ)由題設(shè)知,ABCD是正方形,所以AC⊥BD.
由(Ⅰ),QO⊥平面ABCD. 故可分別以直線CA、DB、QP為x軸、y軸、z軸建立空間直角坐標(biāo)系(如圖),由題條件,相關(guān)各點的坐標(biāo)分別是P(0,0,1),A(,0,0),Q(0,0,-2),B(0,,0).
所以


于是.
從而異面直線AQ與PB所成的角是.
(Ⅲ)由(Ⅱ),點D的坐標(biāo)是(0,-,0),, 
,設(shè)是平面QAD的一個法向量,由

.
取x=1,得.
所以點P到平面QAD的距離.
點評:典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟,利用向量則能簡化證明過程。本題解法較多,特別是求角及距離時,運用了“向量法”,實現(xiàn)了問題的有效轉(zhuǎn)化。對考生計算能力要求較高
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(滿分13分)
如圖,已知三棱錐A-BPC中,AP⊥PC,AC⊥BC,M為AB中點,D為PB中點,且△PMB為正三角形.

(1)求證:DM∥平面APC;
(2)求證:平面ABC⊥平面APC;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖:在三棱錐D-ABC中,已知是正三角形,AB平面BCD,,E為BC的中點,F(xiàn)在棱AC上,且

(1)求三棱錐DABC的表面積;
(2)求證AC⊥平面DEF;
(3)若MBD的中點,問AC上是否存在一點N,使MN∥平面DEF?若存在,說明點N的位置;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線l與球O有且只有一個公共點P,從直線l出發(fā)的兩個半平面截球O的兩個截面圓的半徑分別為1和.若二面角的平面角為150°,則球O的表面積為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共12分)
在如圖的多面體中,⊥平面,,,,,   的中點.

(Ⅰ)求證:平面;
(Ⅱ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,正四棱錐的所有棱長相等,EPC的中點,則異面直線BEPA所成角的余弦值是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,底面為直角梯形ABCD,AD∥BC,∠BAD=90O,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分別為PC,PB的中點.(1)求證:PB⊥DM;(2)求CD與平面ADMN所成角的正弦值;(3)在棱PD上是否存在點E,且PE∶ED=λ,使得二面角C-AN-E的平面角為60o.若存在求出λ值,若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
在四棱錐中,//,, ,平面,.

(Ⅰ)設(shè)平面平面,求證://;
(Ⅱ)求證:平面;
(Ⅲ)設(shè)點為線段上一點,且直線與平面所成角的正弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分16分)如圖,在六面體中,,,.

求證:(1);(2).

查看答案和解析>>

同步練習(xí)冊答案