設(shè)x,y滿足約束條件 ,若目標函數(shù)z=ax+by(a>0,b>0)的值是最大值為12,則的最小值(   )

A.             B.               C.              D.4

 

【答案】

A

【解析】

試題分析:畫出可行域及直線ax+by=0,平移直線ax+by=0,觀察得到,當其經(jīng)過點A(4,6)時,使z=ax+by(a>0,b>0)的值是最大值,即4a+6b="12" ,2a+3b=6,

所以=(2a+3b)()=(13+,故選A。

考點:本題主要考查簡單線性規(guī)劃的應用,均值定理的應用。

點評:中檔題,從已知出發(fā),可確定得到a,b的一個和式為定值,進一步應用均值定理,確定的最小值。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)x,y滿足約束條件
x+y≤1
y≤x
y≥-2
,則z=3x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)x,y滿足約束條件
3x-y-6≤0
x-y+2≥0
x≥0,y≥0
,若目標函數(shù)z=ax+by(a>0,b>0)的最大值為12,則
3
a
+
2
b
的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•奉賢區(qū)二模)(文)設(shè)x,y滿足約束條件
x≥0
y≥0
x
3a
+
y
4a
≤1
z=
y+1
x+1
的最小值為
1
4
,則a的值
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)x,y滿足約束條件
x-y+2≥0
4x-y-4≤0
x≥0
y≥0
,若目標函數(shù)z=ax+by(a>0,b>0)的最大值為6,則w=2ab的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)x,y滿足約束條件
x+y≥0
x-y+3≥0
x≤3
,則z=2x-y的最大值為
 

查看答案和解析>>

同步練習冊答案